scholarly journals Combustion Efficiency in a Fluidized-Bed Combustor with a Modified Perforated Plate for Air Distribution

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1489 ◽  
Author(s):  
Erdiwansyah ◽  
Mahidin ◽  
Husni Husin ◽  
Nasaruddin ◽  
Muhtadin ◽  
...  

Combustion efficiency is one of the most important parameters especially in the fluidized-bed combustor. Investigations into the efficiency of combustion in fluidized-bed combustor fuels using solid biomass waste fuels in recent years are increasingly in demand by researchers around the world. Specifically, this study aims to calculate the combustion efficiency in the fluidized-bed combustor. Combustion efficiency is calculated based on combustion results from the modification of hollow plates in the fluidized-bed combustor. The modified hollow plate aims to control combustion so that the fuel incorporated can burn out and not saturate. The combustion experiments were tested using palm oil biomass solid waste fuels such as palm kernel shell, oil palm midrib, and empty fruit bunches. The results of the measurements showed that the maximum combustion temperature for the palm kernel shell fuel reached 863 °C for M1 and 887 °C for M2. The maximum combustion temperature measurements for M1 and M2 from the oil palm midrib fuel testing reached 898 °C and 858 °C, respectively, while the maximum combustion temperature for M1 and M2 from the empty fruit bunches fuel was 667 °C and M2 847 °C, respectively. The rate of combustion efficiency with the modification of the hole plate in the fluidized-bed combustor reached 96.2%. Thermal efficiency in fluidized-bed combustors for oil palm midrib was 72.62%, for PKS was 70.03%, and for empty fruit bunches was 52.43%. The highest heat transfer rates for the oil palm midrib fuel reached 7792.36 W/m2, palm kernel shell 7167.38 W/m2, and empty fruit bunches 5127.83 W/m2. Thus, the modification of the holed plate in the fluidized-bed combustor chamber showed better performance of the plate than without modification.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Erdiwansyah ◽  
Mahidin ◽  
Husni Husin ◽  
Muhammad Faisal ◽  
Muhtadin ◽  
...  

Investigation of combustion temperature through experiments with a wide range of fuels, both solid and liquid, is continuously being conducted by scientists around the world, while the measurement of heat transfer rate can be analyzed when the combustion process occurs. Previous research has generally been conducted using liquefied gas, fossil fuels, and alcohol additives. Specifically, the research in this work investigated the convection heat rate and combustion temperature through the modification of the perforated plate. The experiment was conducted in the fluidized-bed combustor (FBC) fuel chamber using solid waste fuel of oil palm biomass. Measurements were performed at four different points using the HotTemp HT-306 Digital Thermometer. The results of the experiment showed that the convection heat rate in measurement one (M-I) reached 8.258 W/m2 for palm kernel shell (PKS) fuel. Meanwhile, in measurement two (M-II), the convection rate of 7.392 W/m2 was produced by oil palm midrib (OPM) fuel. The highest combustion temperature was recorded with OPM fuel (884°C) at M-I. However, the combustion temperature of the PKS combustion process is higher at 896°C but shows a less good trend than OPM. Overall, the measurement results of the three types of fuel used to modify the perforated plate applied in the FBC fuel chamber are excellent. It can be proven that the fuel is put into the combustion chamber with nothing left.


2021 ◽  
Author(s):  
Erdiwansyah Erdiwansyah ◽  
Mahidin Mahidin ◽  
Husni Husin ◽  
Nasaruddin Nasaruddin ◽  
Muhtadin Muhtadin ◽  
...  

Abstract Combustion efficiency is one of the most important parameters, especially in the FBC combustion chamber. Investigations into the efficiency of combustion in FBC fuels using solid biomass waste fuels in recent years are increasingly in demand by researchers around the world. Specifically, this study aims to calculate the combustion efficiency in the FBC combustion chamber. Combustion efficiency is calculated based on combustion results from modification of hollow plates in the FBC combustion chamber. The modified hollow plate aims to control combustion so that the fuel incorporated can burn out and not saturate. The combustion experiments were tested using palm oil biomass solid waste fuels such as PKS, OPM, and EFB. The results of the measurements showed that the maximum combustion temperature for MCC fuel reached 863oC for M1 and 887oC on M2. The maximum combustion temperature measurements for M1 and M2 from OPM fuel testing reached 898oC and 858oC, respectively, while the maximum combustion temperature for EFB fuel was 667oC andM2 847oC, respectively. The rate of combustion efficiency with the modification of the hole plate in the FBC combustion chamber reached 96.2%. Thermal efficiency in FBC combustion chamber for OPM 72.62%, MCC 70.03%, and EFB 52.43%. The highest heat transfer rates for OPM fuel reached 7792.36 w/m, MCC 7167.38 w/m, and EFB 5127.83 w/m. Thus, modification of the holed plate in the FBC chamber showed better performance of the plate without modification.


2021 ◽  
Author(s):  
Erdiwansyah Erdiwansyah ◽  
Mahidin Mahidin ◽  
Husni Husin ◽  
Nasaruddin Nasaruddin ◽  
Muhtadin Muhtadin ◽  
...  

Abstract Combustion efficiency is one of the most important parameters, especially in the FBC combustion chamber. Investigations into the efficiency of combustion in FBC fuels using solid biomass waste fuels in recent years are increasingly in demand by researchers around the world. Specifically, this study aims to calculate the combustion efficiency in the FBC combustion chamber. Combustion efficiency is calculated based on combustion results from modification of hollow plates in the FBC combustion chamber. The modified hollow plate aims to control combustion so that the fuel incorporated can burn out and not saturate. The combustion experiments were tested using palm oil biomass solid waste fuels such as PKS, OPM, and EFB. The results of the measurements showed that the maximum combustion temperature for MCC fuel reached 863oC for M1 and 887oC on M2. The maximum combustion temperature measurements for M1 and M2 from OPM fuel testing reached 898oC and 858oC, respectively, while the maximum combustion temperature for EFB fuel was 667oC andM2 847oC, respectively. The rate of combustion efficiency with the modification of the hole plate in the FBC combustion chamber reached 96.2%. Thermal efficiency in FBC combustion chamber for OPM 72.62%, MCC 70.03%, and EFB 52.43%. The highest heat transfer rates for OPM fuel reached 7792.36 w/m, MCC 7167.38 w/m, and EFB 5127.83 w/m. Thus, modification of the holed plate in the FBC chamber showed better performance of the plate without modification.


2016 ◽  
Vol 35 (2) ◽  
pp. 150-157 ◽  
Author(s):  
M. Shahbaz ◽  
S. Yusup ◽  
M. Y. Naz ◽  
S. A. Sulaiman ◽  
A. Inayat ◽  
...  

2021 ◽  
Vol 1195 (1) ◽  
pp. 012005
Author(s):  
Erdiwansyah ◽  
Mahidin ◽  
Husni Husin ◽  
Nasaruddin ◽  
Muhibbuddin ◽  
...  

Abstract Biomass from palm oil is a renewable energy source that can be utilized and has very promising availability. Biomass energy is a renewable and sustainable energy that can replace conventional (fossil) fuels. The main objective of the experiment in this article is to analyze the combustion temperature, emissions, and efficiency of palm oil biomass fuel to use and applied in rural/remote areas. The palm oil biomass used in this study is palm kernel shells, empty fruit bunches, oil palm midrib, and oil palm fibers. The experiments in the research carried out in a fluidized-bed combustion chamber designed explicitly with capacities of up to 5 kg of biomass. The results of operations on fluidized-bed when the valve is open 100%, 75%, and 50% with overall palm oil biomass show a high combustion temperature. The highest combustion temperature was recorded in the TC test for 100% open valves with 3 kg biomass of 943°C. While the minimum combustion temperature obtained on TF2 at 50% open valve with 1 kg biomass of 619°C, overall combustion temperatures in this experiment showed high results. The maximum emission for O2 is 20.4% which is obtained at 50% open valve, while for CO2 the maximum emission is produced when 100% open valve is 19.9% with a biomass weight of 1 kg and 3 kg, respectively. The yield for maximum combustion efficiency when using 1 kg of biomass recorded at 50% open valve was 94.9%. While the minimum efficiency of 87.7% is obtained when the valve is 100% open with biomass of 2 kg. As the biomass fuel used in fluidized-bed increases, the combustion temperature also increases significantly.


2020 ◽  
Vol 31 ◽  
pp. 221-227 ◽  
Author(s):  
Eva Leones Dominguez ◽  
Arasu Uttran ◽  
Soh Kheang Loh ◽  
Marie-Hélène Manero ◽  
Richard Upperton ◽  
...  

Author(s):  
Arthur P. Fraas

Pressurizing a fluidized bed combustor with a gas turbine greatly improves both sulfur retention and combustion efficiency. Operating the gas turbine with a high inlet temperature (e.g. 900°C) would yield a thermal efficiency about four points higher than for an atmospheric furnace, but 40 y of experience have failed to solve problems with flyash erosion and deposits. Extensive experience such as that with fluidized bed catalytic cracking units indicates that the gas turbine blade erosion and deposit problems can be handled by dropping the turbine inlet temperature below 400°C where the turbine delivers just enough power to drive the compressor. The resulting thermal efficiency is about half a point higher than for an atmospheric bed, and the capital cost of the FBC-related components is about 40% lower. While a closed-cycle helium gas turbine might be used rather than a steam cycle, the thermal efficiency would be about four points lower and the capital cost of the FBC-related components would be roughly twice that for the corresponding steam plant.


Sign in / Sign up

Export Citation Format

Share Document