scholarly journals Cholesky Factorization Based Online Sequential Multiple Kernel Extreme Learning Machine Algorithm for a Cement Clinker Free Lime Content Prediction Model

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1540
Author(s):  
Pengcheng Zhao ◽  
Ying Chen ◽  
Zhibiao Zhao

Aiming at the difficulty in real-time measuring and the long offline measurement cycle for the content of cement clinker free lime (fCaO), it is very important to build an online prediction model for fCaO content. In this work, on the basis of Cholesky factorization, the online sequential multiple kernel extreme learning machine algorithm (COS-MKELM) is proposed. The LDLT form Cholesky factorization of the matrix is introduced to avoid the large operation amount of inverse matrix calculation. In addition, the stored initial information is utilized to realize online model identification. Then, three regression datasets are used to test the performance of the COS-MKELM algorithm. Finally, an online prediction model for fCaO content is built based on COS-MKELM. Experimental results demonstrate that the fCaO content model improves the performance in terms of learning efficiency, regression accuracy, and generalization ability. In addition, the online prediction model can be corrected in real-time when the production conditions of cement clinker change.

Author(s):  
Renxiong Liu

Objective: Lithium-ion batteries are important components used in electric automobiles (EVs), fuel cell EVs and other hybrid EVs. Therefore, it is greatly important to discover its remaining useful life (RUL). Methods: In this paper, a battery RUL prediction approach using multiple kernel extreme learning machine (MKELM) is presented. The MKELM’s kernel keeps diversified by consisting multiple kernel functions including Gaussian kernel function, Polynomial kernel function and Sigmoid kernel function, and every kernel function’s weight and parameter are optimized through differential evolution (DE) algorithm. Results : Battery capacity data measured from NASA Ames Prognostics Center are used to demonstrate the prediction procedure of the proposed approach, and the MKELM is compared with other commonly used prediction methods in terms of absolute error, relative accuracy and mean square error. Conclusion: The prediction results prove that the MKELM approach can accurately predict the battery RUL. Furthermore, a compare experiment is executed to validate that the MKELM method is better than other prediction methods in terms of prediction accuracy.


2018 ◽  
Vol 22 (11) ◽  
pp. 3507-3517 ◽  
Author(s):  
Jingming Xue ◽  
Qiang Liu ◽  
Miaomiao Li ◽  
Xinwang Liu ◽  
Yongkai Ye ◽  
...  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hong Yang ◽  
Lipeng Gao ◽  
Guohui Li

Aiming at the chaotic characteristics of underwater acoustic signal, a prediction model of grey wolf-optimized kernel extreme learning machine (OKELM) based on MVMD is proposed in this paper for short-term prediction of underwater acoustic signals. To solve the problem of K value selection in variational mode decomposition, a new K value selection method MVMD is proposed from the perspective of mutual information, which avoids the blindness of variational mode decomposition (VMD) in the preset modal number. Based on the prediction model of kernel extreme learning machine (KELM), this paper uses grey wolf optimization (GWO) algorithm to optimize and select its regularization parameters and kernel parameters and proposes an optimized kernel extreme learning machine OKELM. To further improve the prediction performance of the model, combined with MVMD, an underwater acoustic signal prediction model based on MVMD-OKELM is established. MVMD-OKELM prediction model is applied to Mackey–Glass chaotic time series prediction and underwater acoustic signal prediction and is compared with ARIMA, EMD-OKELM, and other prediction models. The experimental results show that the proposed MVMD-OKELM prediction model has a higher prediction accuracy and can be effectively applied to the prediction of underwater acoustic signal series.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1645
Author(s):  
Haoran Zhao ◽  
Sen Guo

The accurate prediction of electricity-heat-cooling-gas loads on the demand side in the integrated energy system (IES) can provide significant reference for multiple energy planning and stable operation of the IES. This paper combines the multi-task learning (MTL) method, the Bootstrap method, the improved Salp Swarm Algorithm (ISSA) and the multi-kernel extreme learning machine (MKELM) method to establish the uncertain interval prediction model of electricity-heat-cooling-gas loads. The ISSA introduces the dynamic inertia weight and chaotic local searching mechanism into the basic SSA to improve the searching speed and avoid falling into local optimum. The MKELM model is established by combining the RBF kernel function and the Poly kernel function to integrate the superior learning ability and generalization ability of the two functions. Based on the established model, weather, calendar information, social–economic factors, and historical load are selected as the input variables. Through empirical analysis and comparison discussion, we can obtain: (1) the prediction results of workday are better than those on holiday. (2) The Bootstrap-ISSA-MKELM based on the MTL method has superior performance than that based on the STL method. (3) Through comparing discussion, we discover the established uncertain interval prediction model has the superior performance in combined electricity-heat-cooling-gas loads prediction.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jingyi Liu ◽  
Ba Tuan Le

The theory and implementation of extreme learning machine (ELM) prove that it is a simple, efficient, and accurate machine learning method. Compared with other single hidden layer feedforward neural network algorithms, ELM is characterized by simpler parameter selection rules, faster convergence speed, and less human intervention. The multiple hidden layer regularized extreme learning machine (MRELM) inherits these advantages of ELM and has higher prediction accuracy. In the MRELM model, the number of hidden layers is randomly initiated and fixed, and there is no iterative tuning process. However, the optimal number of hidden layers is the key factor to determine the generalization ability of MRELM. Given this situation, it is obviously unreasonable to determine this number by trial and random initialization. In this paper, an incremental MRELM training algorithm (FC-IMRELM) based on forced positive-definite Cholesky factorization is put forward to solve the network structure design problem of MRELM. First, an MRELM-based prediction model with one hidden layer is constructed, and then a new hidden layer is added to the prediction model in each training step until the generalization performance of the prediction model reaches its peak value. Thus, the optimal network structure of the prediction model is determined. In the training procedure, forced positive-definite Cholesky factorization is used to calculate the output weights of MRELM, which avoids the calculation of the inverse matrix and Moore-Penrose generalized inverse of matrix involved in the training process of hidden layer parameters. Therefore, FC-IMRELM prediction model can effectively reduce the computational cost brought by the process of increasing the number of hidden layers. Experiments on classification and regression problems indicate that the algorithm can be effectively used to determine the optimal network structure of MRELM, and the prediction model training by the algorithm has excellent performance in prediction accuracy and computational cost.


Sign in / Sign up

Export Citation Format

Share Document