scholarly journals Introgression of Large Grain Size from Australian Wild Rice and Its Agronomical Importance

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 121
Author(s):  
Ryuji Ishikawa ◽  
Takahiro Mishimaki ◽  
Daiki Toyomoto ◽  
Koki Katano ◽  
Katsuyuki Ichitani ◽  
...  

There are a few wild species belonging to genus Oryza in Australia. [...]

2015 ◽  
Author(s):  
Eric J Fuchs ◽  
Allan Meneses Martínez ◽  
Amanda Calvo ◽  
Melania Muñoz ◽  
Griselda Arrieta-Espinoza

Wild crop relatives are an important source of genetic diversity for crop improvement. However, gene flow from cultivated species into wild species may prove detrimental. Introgression may lead to changes in wild species by incorporating alleles from domesticated species, which may increase the likelihood of extinction. The objective of the present study is to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated if there is evidence of introgression between wild rice and commercial varieties of O. sativa since it is cultivated commonly in close proximity to wild rice populations. Individuals from all known O. glumaepatula populations in Costa Rica were collected. With the aid of 455 AFLP markers, we characterized the genetic diversity and structure among seven populations in northern Costa Rica. Given the dominant nature of our markers, Bayesian estimates of genetic structure were used. We also compared genetic diversity estimates between O. glumaepatula individuals and O. sativa commercial rice. Our results show that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. This is likely a result of large population size. Despite the restricted distributions of this wild species, in Costa Rica most populations are composed of several thousand individuals, thus reducing the effects of drift on genetic diversity. Our results also found low but significant structure (\theta=0.03±0.001) among populations that are separated by ~10 Km within a single river. The position of the population along the river did not influence genetic diversity estimates or differences among populations. This river does not have a strong current and meadows or seeds may easily move upstream, thus homogenizing genetic diversity across populations regardless of river position. Ample gene flow through pollen, seeds or detached culms within the same river reduces genetic structure. A Bayesian structure analysis showed that individuals from two populations share a significant proportion of their genomes with O. sativa genome. These results suggest that the low levels of genetic structure found in these populations are likely the result of introgression from cultivated O. sativa populations. These results expose an important biohazard as recurrent hybridization may reduce genetic diversity of this wild rice species. Introgression may transfer commercial traits into the only populations of O. glumaepatula in Costa Rica, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.


2018 ◽  
Vol 50 (2) ◽  
pp. 285-296 ◽  
Author(s):  
Joshua C. Stein ◽  
Yeisoo Yu ◽  
Dario Copetti ◽  
Derrick J. Zwickl ◽  
Li Zhang ◽  
...  

Author(s):  
Eric J Fuchs ◽  
Allan Meneses Martínez ◽  
Amanda Calvo ◽  
Melania Muñoz ◽  
Griselda Arrieta-Espinoza

Wild crop relatives are an important source of genetic diversity for crop improvement. However, gene flow from cultivated species into wild species may prove detrimental. Introgression may lead to changes in wild species by incorporating alleles from domesticated species, which may increase the likelihood of extinction. The objective of the present study is to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated if there is evidence of introgression between wild rice and commercial varieties of O. sativa since it is cultivated commonly in close proximity to wild rice populations. Individuals from all known O. glumaepatula populations in Costa Rica were collected. With the aid of 455 AFLP markers, we characterized the genetic diversity and structure among seven populations in northern Costa Rica. Given the dominant nature of our markers, Bayesian estimates of genetic structure were used. We also compared genetic diversity estimates between O. glumaepatula individuals and O. sativa commercial rice. Our results show that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. This is likely a result of large population size. Despite the restricted distributions of this wild species, in Costa Rica most populations are composed of several thousand individuals, thus reducing the effects of drift on genetic diversity. Our results also found low but significant structure (\theta=0.03±0.001) among populations that are separated by ~10 Km within a single river. The position of the population along the river did not influence genetic diversity estimates or differences among populations. This river does not have a strong current and meadows or seeds may easily move upstream, thus homogenizing genetic diversity across populations regardless of river position. Ample gene flow through pollen, seeds or detached culms within the same river reduces genetic structure. A Bayesian structure analysis showed that individuals from two populations share a significant proportion of their genomes with O. sativa genome. These results suggest that the low levels of genetic structure found in these populations are likely the result of introgression from cultivated O. sativa populations. These results expose an important biohazard as recurrent hybridization may reduce genetic diversity of this wild rice species. Introgression may transfer commercial traits into the only populations of O. glumaepatula in Costa Rica, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.


2018 ◽  
Vol 50 (11) ◽  
pp. 1618-1618 ◽  
Author(s):  
Joshua C. Stein ◽  
Yeisoo Yu ◽  
Dario Copetti ◽  
Derrick J. Zwickl ◽  
Li Zhang ◽  
...  

2001 ◽  
Vol 49 (4) ◽  
pp. 329-336
Author(s):  
Q. YANG ◽  
H. PANG ◽  
Y. SONG ◽  
X. LIU

Some wild species of the genus Oryza such as O. rufipogon and O. longistaminata show a high level of resistance to pests and diseases including rice blast (caused by Magnaporthe grisea). To transfer blast resistance from wild species into cultivatedvarieties (O. sativa), interspecific hybrids were produced and anther culture was used toaccelerate the procedure of resistance breeding. Anther culture efficiency depended onboth the medium and the genotype of the cultivated varieties and the wild species. Afterinoculation with a mixture of six strains with wide spectrum virulence, all the F1 hybridswere resistant to blast; the F2 plants segregated, from high resistance to susceptibility, anda similar result was obtained for the H1 and H2 plants. At the H3 stage, blast resistancetended to be stable and almost 100% of inoculated H5 plants were highly resistant to riceblast. For agronomic characteristics, the F2 and H1 showed segregation, but no significantdifferences were seen between the cultivated parents and the H2 to H5 generations. Theresults demonstrate that blast resistance genes can be transferred from wild rice speciesinto cultivated varieties through crossing and anther culture, and the H5 can be used asstable lines in future breeding programmes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yinghua Pan ◽  
Lei Chen ◽  
Yan Zhao ◽  
Haifeng Guo ◽  
Jingcheng Li ◽  
...  

Rice (Oryza sativa L.) is an important staple food crop for more than half of the world’s population. Enhancing the grain quality and yield of rice to meet growing demand remains a major challenge. Here, we show that OsMKK3 encode a MAP kinase kinase that controls grain size and chalkiness by affecting cell proliferation in spikelet hulls. We showed that OsSPL16, GS5, and GIF1 have a substantial effect on the OsMKK3-regulated grain size pathway. OsMKK3 has experienced strong directional selection in indica and japonica. Wild rice accessions contained four OsMKK3 haplotypes, suggesting that the OsMKK3 haplotypes present in cultivated rice likely originated from different wild rice accessions during rice domestication. OsMKK3-Hap1, gs3, and gw8 were polymerized to enhance the grain length. Polymerization of beneficial alleles, such as OsMKK3-Hap1, gs3, gw8, fgr, alk, chalk5, and wx, also improved the quality of hybrid rice. Overall, the results indicated that beneficial OsMKK3 alleles could be used for genomic-assisted breeding for rice cultivar improvement and be polymerized with other beneficial alleles.


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Sign in / Sign up

Export Citation Format

Share Document