scholarly journals Outlet Temperature Prediction of Boiling Heat Transfer in Helical Coils through Artificial Neural Network

Proceedings ◽  
2020 ◽  
Vol 39 (1) ◽  
pp. 16
Author(s):  
Krisana Insom ◽  
Patcharin Kamsing ◽  
Thaweerath Phisannupawong ◽  
Peerapong Torteeka

In the present study, deep learning neural network model has been employed in many engineering problems including heat transfer prediction. The main consideration of this document is to predict the performance of the boiling heat transfer in helical coils under terrestrial gravity conditions and compare with actual experimental data. Total of 877 data sample has been used in the present neural model. Artificial new Neural Network (ANN) model developed in Python environment with Multi-layer Perceptron (MLP) using four parameters (helical coils dimensions, mass flow rate, heating power, inlet temperature) and one parameter (outlet temperature) has been used in the input layer and output layer in order. Levenberg-Marquardt (LM) algorithm using L2 Regularization to find out the optimal model. A typical feed-forward neural network model composed of three layers, with 30 numbers of neurons in each hidden layer, has been found as optimal based on statistical error analysis. The 4-30-30-1 neural model predicts the characteristics of the helical coil with the accuracy of 98.16 percent in the training stage and 96.68 percent in the testing stage. The result indicated that the proposed ANN model successfully predicts the heat transfer performance in helical coils and can be applied for others operation concerned with heat transfer prediction for future works

2013 ◽  
Vol 441 ◽  
pp. 666-669 ◽  
Author(s):  
You Jun Yue ◽  
Ying Dong Yao ◽  
Hui Zhao ◽  
Hong Jun Wang

In order to solve the problem that the small and middle converters unable to introduce the sublance detection technology to improve the control precision of endpoint because of the constraints of economy and technology, a method which combine the pedigree cluster and neural network is studied, the pedigree cluster divide the large data sets into several categories, the degree of similarity will be relatively high in each category after division, then train neural model for every category. Finally make predictions. Simulation results show that the multi-neural network model has better prediction results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Meiling Liang ◽  
Xiaohui Zhang ◽  
Rong Zhao ◽  
Xulin Wen ◽  
Shan Qing ◽  
...  

An optimal prediction model for flow boiling heat transfer of refrigerant mixture R245fa inside horizontal smooth tubes is proposed based on the GRNN neural network. The main factors strongly affecting flow boiling such as mass flux rate (G), heat flux (q), quality of vapor-liquid mixture (x), evaporation temperature (Tev), and tube inner diameter (D) are used as the inputs of the model and the flow boiling heat transfer coefficient (h) as the output. Neural network model is used to optimize the prediction of flow boiling heat transfer coefficient of R245fa in horizontal light pipe through training and learning. The prediction results are in good agreement with the experimental results. For the network model of heat transfer, the average deviation is 7.59%, the absolute average deviation is 4.89%, and the root mean square deviation is 10.51%. The optimized prediction accuracy of flow boiling heat transfer coefficient is significantly improved compared with four frequently used conventional correlations. The simulation results reveal that the modeling method based on R245fa neural network is feasible to calculate the flow boiling heat transfer coefficient, and it may provide some guidelines for the optimization design of tube evaporators for R245fa.


2013 ◽  
Vol 756-759 ◽  
pp. 3330-3335
Author(s):  
Ji Fu Nong

We propose a new self-organizing neural model that performs principal components analysis. It is also related to the adaptive subspace self-organizing map (ASSOM) network, but its training equations are simpler. Experimental results are reported, which show that the new model has better performance than the ASSOM network.


2014 ◽  
Vol 574 ◽  
pp. 342-346
Author(s):  
Hong Yan Duan ◽  
Huan Rong Zhang ◽  
Ming Zheng ◽  
Xiao Hong Wang

The fracture problems of medium carbon steel under extra-low cycle bend torsion fatigue loading were studied using artificial neural networks (ANN) in this paper. The ANN model exhibited excellent comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, the presetting deflection and notch open angle, and the output, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


2013 ◽  
Vol 345 ◽  
pp. 272-276 ◽  
Author(s):  
Hong Yan Duan ◽  
You Tang Li ◽  
Zhi Jia Sun ◽  
Yang Yang Zhang

The fracture problems of medium carbon steel (MCS) under extra-low cycle bend torsion loading were studied using artificial neural networks (ANN) in this paper. The training data were used in the formation of training set of ANN. The ANN model exhibited excellent comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, notch depth and tip radius of the notch, and the output, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


Sign in / Sign up

Export Citation Format

Share Document