scholarly journals From Characterisation to Validation: A Journey through Master’s Level Analytical Chemistry

Proceedings ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 12
Author(s):  
Victoria Hilborne ◽  
Anna Roffey

The master’s degree in Applied Analytical Chemistry at University College London (UCL) includes valuable teaching input from the UK National Measurement Laboratory for Chemical and Bio-Measurement hosted at LGC. The course starts by introducing accuracy, sensitivity, specificity, trueness, and precision for validating analytical chemistry measurement methods. The principles of proficiency tests, quality control, ruggedness, and associated statistics are practiced using a wide variety of case studies.

Author(s):  
Светлана Владимировна Габова ◽  
Анастасия Александровна Трусагина ◽  
Михаил Евгеньевич Артёмов

Важнейшим звеном системы контроля качества нефти являются испытательные лаборатории, от компетентности которых зависит достоверность результатов измерений и эффективность управленческих решений, принимаемых с учетом полученных данных. Одним из способов подтверждения достоверности результатов измерений является проверка квалификации лаборатории посредством ее участия в межлабораторных сличительных (сравнительных) испытаниях (МСИ). В настоящей статье рассмотрены вопросы проведения таких испытаний для лабораторий организаций системы «Транснефть». Описан действующий порядок, предполагающий участие лабораторий в МСИ в регионах своего местонахождения, при этом разработкой и реализацией программы проверки квалификации занимаются сторонние организации - провайдеры МСИ. Такая практика имеет существенные недостатки, не позволяя, в том числе, систематизировать и обобщить результаты МСИ для общей оценки деятельности испытательных лабораторий ПАО «Транснефть». В статье представлен централизованный подход к проведению МСИ в ПАО «Транснефть», устанавливающий единый порядок участия лабораторий в испытаниях с целью осуществления общей оценки квалификации лабораторий, своевременной разработки и реализации предупреждающих и корректирующих мероприятий по улучшению деятельности лабораторий, усовершенствования системы контроля качества нефти на объектах ПАО «Транснефть». The most important link in the oil quality control system are testing laboratories, the competence of which determines the reliability of measurement results and the effectiveness of management decisions based on the data obtained. One way to confirm the validity of measurement results is to verify the laboratory qualifications through its participation in interlaboratory proficiency (comparative) tests (IPT). This article considers the issues of such tests for the laboratories of Transneft system entities. The current procedure is described, which involves the participation of laboratories in the IPT in the regions of their location, while the development and implementation of the proficiency testing program is carried out by third-party IPT provider organizations. This practice has significant drawbacks, not allowing, among other things, to systematize and summarize the results of IPT for an overall assessment of the activities of Transneft PJSC’s testing laboratories. The article presents a centralized approach to conducting IPT in Transneft PJSC, which establishes a unified procedure for the participation of laboratories in tests in order to implement an overall assessment of laboratory qualification, timely development and implementation of preventive and corrective measures to improve the performance of laboratories and improve the oil quality control system at the Transneft PJSC facilities.


1996 ◽  
Vol 26 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Jeremy A. Klein ◽  
Edward P. Stacey ◽  
Christopher J. Coggill ◽  
Mick McLean ◽  
May I. Sagua

Author(s):  
Sean Costelloe ◽  
Natividad Rico Rios ◽  
Nicola Goulding ◽  
Hema Mistry ◽  
Adam Stretton ◽  
...  

Background Haemolysis, icterus and lipaemia (HIL) are common interferants in laboratory medicine, potentially impacting patient care. This survey investigates HIL management in medical laboratories across the UK and ROI. Methods A survey was sent to members of key professional organisations for laboratory medicine in the UK and ROI. Questions related to the detection, monitoring, quality control, and management of HIL. Results In total, responses from 124 laboratories were analysed, predominantly from England (52%) and ROI (36%). Most responses were from public hospitals with biochemistry services (90%), serving primary care (91%), inpatients (91%), and outpatients (89%). Most laboratories monitored H (98%), I (88%), and L (96%) using automated indices (93%), alone or in combination with visual inspection. Manufacturer-stated cut-offs were used by 83% and were applied to general chemistries in 79%, and immunoassays in 50%. Where HIL cut-offs are breached, 64% withheld results, while 96% reported interference to users. HIL were defined using numeric scales (70%) and ordinal scales (26%). HIL targets exist in 35% of laboratories, and 54% have attempted to reduce HIL. Internal Quality Control for HIL was lacking in 62% of laboratories, and just 18% of respondents have participated in External Quality Assurance. Laboratories agree manufacturers should: standardise HIL reporting (94%), ensure comparability between platforms (94%), and provide information on HIL cross-reactivity (99%). Respondents (99%) showed interest in evidence-based, standardised HIL cut-offs. Conclusions Most respondents monitor HIL, although the wide variation in practice may differentially affect clinical care. Laboratories seem receptive to education and advice on HIL management.


2019 ◽  
Vol 43 (8) ◽  
pp. 630-636 ◽  
Author(s):  
Jackeline Moral ◽  
Callan Hundl ◽  
Dayong Lee ◽  
Maddisen Neuman ◽  
Aimee Grimaldi ◽  
...  

Abstract Declared proficiency tests are limited in their use for testing the performance of the entire system, because analysts are aware that they are being tested. A blind quality control (BQC) is intended to appear as a real case to the analyst to remove any intentional or subconscious bias. A BQC program allows a real-time assessment of the laboratory’s policies and procedures and monitors reliability of casework. In September 2015, the Houston Forensic Science Center (HFSC) began a BQC program in blood alcohol analysis. Between September 2015 and July 2018, HFSC submitted 317 blind cases: 89 negative samples and 228 positive samples at five target concentrations (0.08, 0.15, 0.16, 0.20 and 0.25 g/100 mL; theoretical targets). These blood samples were analyzed by a headspace gas chromatograph interfaced with dual-flame ionization detectors (HS-GC-FID). All negative samples produced `no ethanol detected’ results. The mean (range) of reported blood alcohol concentrations (BACs) for the aforementioned target concentrations was 0.075 (0.073–0.078), 0.144 (0.140–0.148), 0.157 (0.155–0.160), 0.195 (0.192–0.200) and 0.249 (0.242–0.258) g/100 mL, respectively. The average BAC percent differences from the target for the positive blind cases ranged from −0.4 to −6.3%, within our uncertainty of measurement (8.95–9.18%). The rate of alcohol evaporation/degradation was determined negligible. A multiple linear regression analysis was performed to compare the % difference in BAC among five target concentrations, eight analysts, three HS-GC-FID instruments and two pipettes. The variables other than target concentrations showed no significant difference (P > 0.2). While the 0.08 g/100 mL target showed a significantly larger % difference than higher target concentrations (0.15–0.25 g/100 mL), the % differences among the higher targets were not concentration-dependent. Despite difficulties like gaining buy-in from stakeholders and mimicking evidence samples, the implementation of a BQC program has improved processes, shown methods are reliable and added confidence to staff’s testimony in court.


1994 ◽  
Vol 77 (3) ◽  
pp. 785-789
Author(s):  
Miguel Valcárcel ◽  
Angel Ríos

Abstract After a brief introduction to the generic aspects of automation in analytical laboratories, the different approaches to quality in analytical chemistry are presented and discussed to establish the following different facets emerging from the combination of quality and automation: automated analytical control of quality of products and systems; quality control of automated chemical analysis; and improvement of capital (accuracy and representativeness), basic (sensitivity, precision, and selectivity), and complementary (rapidity, cost, and personnel factors) analytical features. Several examples are presented to demonstrate the importance of this marriage of convenience in present and future analytical chemistry.


Sign in / Sign up

Export Citation Format

Share Document