scholarly journals Modeling and Simulating the Static Structural Response and Lift Off of a Preloaded Bolted Joint on a Flange

Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 10
Author(s):  
Rami Alfattani

The present paper describes the structural analysis performed on a preloaded bolted joint. The first joint modeled was comprised of a conventional cylindrical flange that was sliced to simplify the analysis for two bolts in lieu of four. This involved an L-shaped flat segment flange. Parametric studies were performed using elastic, large-deformation, non-linear finite element analysis to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, contact surfaces, edge boundary conditions, and joint segment length in this first approach. The second model applied the previous preloaded torque on a complex flange to study the flange lift off. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted joint response.

2014 ◽  
Vol 891-892 ◽  
pp. 827-832
Author(s):  
John Miles Alden ◽  
Peter Hendrik Brand

The concepts of structural safety embedded in recognised international standards for the fatigue design of bolted joints, such as VDI 2230 Part 1, are examined and challenged. This is done by means of theoretical investigation of the behaviour of bolted joints using non-linear finite element analysis. Potential differences between actual bolted joint parameters and behaviour, and implicit design assumptions, are reviewed and their effect on the structural safety of bolted joints in operating equipment examined. An approach to the fatigue design of bolted joints is presented which incorporates alternative concepts of structural safety and uses advanced CAE methods as part of the standard design process.


2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


2012 ◽  
Vol 28 ◽  
pp. e15-e16
Author(s):  
L.H.A. Raposo ◽  
L.C.M. Dantas ◽  
T.A. Xavier ◽  
A.G. Pereira ◽  
A. Versluis ◽  
...  

2013 ◽  
Vol 756-759 ◽  
pp. 4482-4486
Author(s):  
Chun Gan ◽  
Xue Song Luo

In recent years, frequent earthquakes have caused great casualties and economic losses in China. And in the earthquake, damage of buildings and the collapse is the main reason causing casualties. Therefore, in the design of constructional engineering, a seismicity of architectural structure is the pressing task at issue. Through time history analysis method, this paper analyzes the time history of building structural response and then it predicts the peak response of mode by response spectrum analysis. Based on this, this paper constructs a numerical simulation model for the architecture by using finite element analysis software SATWE. At the same time, this paper also calculates the structure seismic so as to determine the design of each function structure in architectural engineering design and then provides reference for the realization of earthquake-resistant building.


1999 ◽  
Vol 82 (5) ◽  
pp. 2393-2405 ◽  
Author(s):  
Magnus K. O. Burstedt ◽  
J. Randall Flanagan ◽  
Roland S. Johansson

Control of grasp stability under different frictional conditions has primarily been studied in manipulatory tasks involving two digits only. Recently we found that many of the principles for control of forces originally demonstrated for two-digit grasping also apply to various three-digit grasps. Here we examine the control of grasp stability in a multidigit task in which subjects used the tips of the thumb, index, and middle finger to lift an object. The grasp resembled those used when lifting a cylindrical object from above. The digits either all contacted the same surface material or one of the digits contacted a surface material that was more, or less, slippery than that contacted by the other two digits. The three-dimensional forces and torques applied by each digit and the contact positions were measured along with the position and orientation of the object. The distribution of forces among the digits strongly reflected constraints imposed by the geometric relationship between the object's center of mass and the contact surfaces. On top of this distribution, we observed changes in force coordination related to changes in the combination of surface materials. When all digits contacted the same surface material, the ratio between the normal force and tangential load ( F n: L ratio) was similar across digits and scaled to provide an adequate safety margin against slip. With different contact surfaces subjects adapted the F n: L ratios at the individual digits to the local friction with only small influences by the friction at the other two digits. They accomplished this by scaling the normal forces similarly at all digits and changing the distribution of load among the digits. The surface combination did not, however, influence digit position, tangential torque, or object tilting systematically. The change in load distribution, rather, resulted from interplay between these factors, and the nature of this interplay varied between trials. That is, subjects achieved grasp stability with various combinations of fingertip actions and appeared to exploit the many degrees of freedom offered by the multidigit grasp. The results extend previous findings based on two-digit tasks to multidigit tasks by showing that subjects adjust fingertip forces at each digit to the local friction. Moreover, our findings suggest that subjects adapted the load distribution to the current frictional condition by regulating the normal forces to allow slips to occur early in the lift task, prior to object lift-off.


Sign in / Sign up

Export Citation Format

Share Document