scholarly journals Comparing the Performance of Neural Network and Deep Convolutional Neural Network in Estimating Soil Moisture from Satellite Observations

2018 ◽  
Vol 10 (9) ◽  
pp. 1327 ◽  
Author(s):  
Lingling Ge ◽  
Renlong Hang ◽  
Yi Liu ◽  
Qingshan Liu

Soil moisture (SM) plays an important role in hydrological cycle and weather forecasting. Satellite provides the only viable approach to regularly observe large-scale SM dynamics. Conventionally, SM is estimated from satellite observations based on the radiative transfer theory. Recent studies have demonstrated that the neural network (NN) method can retrieve SM with comparable accuracy as conventional methods. Here, we are interested in whether the NN model with more complex structures, namely deep convolutional neural network (DCNN), can bring about further improvement in SM retrievals when compared with the NN model used in recent studies. To achieve this objective, the same input data are used for the DCNN and NN models, including L-band Soil Moisture and Ocean Salinity (SMOS) brightness temperature (TB), C-band Advanced Scatterometer (ASCAT) backscattering coefficients, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and soil temperature. The target SM used to train the DCNN and NN models is the European Center for Medium-range Weather Forecasts Re-Analysis Interim (ERA-Interim) product. The experiment consists of two phases: the learning phase from 1 January to 31 December 2015 and the testing phase from 1 January to 31 December 2016. In the learning phase, we train the DCNN and NN models using the ERA-Interim SM. When evaluation between DCNN and NN against in situ measurements in the testing phase, we find that the temporal correlations between DCNN SM and in situ measurements are higher than those between NN SM and in situ measurements by 6 . 2 % and 2 . 5 % on ascending and descending orbits, respectively. In addition, from the perspective of temporal and spatial dynamics, the simulated SM values by DCNN/NN and the ERA-Interim SM agree relatively well at a global scale. Results suggest that both NN and DCNN models are effective in estimating SM from satellite observations, and DCNN can achieve slightly better performance than NN.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2003
Author(s):  
Ling Zhang ◽  
Zixuan Zhang ◽  
Zhaohui Xue ◽  
Hao Li

Soil moisture (SM) plays an important role for understanding Earth’s land and near-surface atmosphere interactions. Existing studies rarely considered using multi-source data and their sensitiveness to SM retrieval with few in-situ measurements. To solve this issue, we designed a SM retrieval method (Multi-MDA-RF) using random forest (RF) based on 29 features derived from passive microwave remote sensing data, optical remote sensing data, land surface models (LSMs), and other auxiliary data. To evaluate the importance of different features to SM retrieval, we first compared 10 filter or embedded type feature selection methods with sequential forward selection (SFS). Then, RF was employed to establish a nonlinear relationship between the in-situ SM measurements from sparse network stations and the optimal feature subset. The experiments were conducted in the continental U.S. (CONUS) using in-situ measurements during August 2015, with only 5225 training samples covering the selected feature subset. The experimental results show that mean decrease accuracy (MDA) is better than other feature selection methods, and Multi-MDA-RF outperforms the back-propagation neural network (BPNN) and generalized regression neural network (GRNN), with the R and unbiased root-mean-square error (ubRMSE) values being 0.93 and 0.032 cm3/cm3, respectively. In comparison with other SM products, Multi-MDA-RF is more accurate and can well capture the SM spatial dynamics.


2020 ◽  
Vol 2020 (4) ◽  
pp. 4-14
Author(s):  
Vladimir Budak ◽  
Ekaterina Ilyina

The article proposes the classification of lenses with different symmetrical beam angles and offers a scale as a spot-light’s palette. A collection of spotlight’s images was created and classified according to the proposed scale. The analysis of 788 pcs of existing lenses and reflectors with different LEDs and COBs carried out, and the dependence of the axial light intensity from beam angle was obtained. A transfer training of new deep convolutional neural network (CNN) based on the pre-trained GoogleNet was performed using this collection. GradCAM analysis showed that the trained network correctly identifies the features of objects. This work allows us to classify arbitrary spotlights with an accuracy of about 80 %. Thus, light designer can determine the class of spotlight and corresponding type of lens with its technical parameters using this new model based on CCN.


Sign in / Sign up

Export Citation Format

Share Document