scholarly journals Retrieval of Sediment Fill Factor by Inversion of a Modified Hapke Model Applied to Sampled HCRF from Airborne and Satellite Imagery

2018 ◽  
Vol 10 (11) ◽  
pp. 1758 ◽  
Author(s):  
Rehman Eon ◽  
Charles Bachmann ◽  
Aaron Gerace

The physical properties of a medium such as density, grain size and surface roughness all influence the angular dependence of spectral signatures. Radiative transfer models, such as the one developed by Hapke, can relate the angular dependence of the reflectance to these geophysical variables. This paper focuses on extracting geophysical parameters, fill factor (decreasing porosity) and the single scattering albedo (SSA), through the inversion of a modified version of the Hapke model of airborne and space-borne imagery. The inversion methodology was validated through controlled experiments within a laboratory setting, where a good correlation (R 2 = 0.72) between the retrieved fill factor and the measured density was obtained. Using the same approach, we also retrieved the sediment fill factor and SSA from airborne data collected by the NASA G-LiHT system, and space-borne data observed by the NOAA GOES imager. The results from these studies provide a mechanism to understand geophysical characteristics of the terrain and may potentially be used for long-term monitoring of the dynamic dunes system.

2020 ◽  
Author(s):  
Benjamin Fores ◽  
Arnaud Watlet ◽  
Michel Van Camp ◽  
Olivier Francis

<p>Spring-based gravimeters are light and easy to install, with a precision around 5 μGal/√Hz. However, they are still not used for long-term gravity monitoring. The main reason for that is the non-linear drift of those instruments, which is very difficult to correct without removing geophysical signals. We will show that when the tilt is actively controlled, a gPhone spring-based gravimeter shows a quasi-linear drift and can reach a long-term stability at the µGal level.</p><p>This allows experiments such as the one in the Rochefort Cave Laboratory (Belgium). Thanks to the size of the gPhone and its low facility requirements, a monitoring from inside a cave was possible. Coupled with another gravity monitoring at the surface, it reveals new information on the local hydrology of this karstic site.</p>


Author(s):  
Barbara S. Minsker ◽  
Charles Davis ◽  
David Dougherty ◽  
Gus Williams

Kerntechnik ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. 513-522 ◽  
Author(s):  
U. Hampel ◽  
A. Kratzsch ◽  
R. Rachamin ◽  
M. Wagner ◽  
S. Schmidt ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 87 ◽  
Author(s):  
Andrea G. Locatelli ◽  
Simone Ciuti ◽  
Primož Presetnik ◽  
Roberto Toffoli ◽  
Emma Teeling

Sign in / Sign up

Export Citation Format

Share Document