scholarly journals Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau

2019 ◽  
Vol 11 (3) ◽  
pp. 360 ◽  
Author(s):  
Meng Li ◽  
Jianshuang Wu ◽  
Chunqiao Song ◽  
Yongtao He ◽  
Ben Niu ◽  
...  

The timing regimes of precipitation can exert profound impacts on grassland ecosystems. However, it is still unclear how the peak aboveground biomass (AGBpeak) of alpine grasslands responds to the temporal variability of growing season precipitation (GSP) on the northern Tibetan Plateau. Here, the temporal variability of precipitation was defined as the number and intensity of precipitation events as well as the time interval between consecutive precipitation events. We conducted annual field measurements of AGBpeak between 2009 and 2016 at four sites that were representative of alpine meadow, meadow-steppe, alpine steppe, and desert-steppe. Thus, an empirical model was established with the time series of the field-measured AGBpeak and the corresponding enhanced vegetation index (EVI) (R2 = 0.78), which was used to estimate grassland AGBpeak at the regional scale. The relative importance of the three indices of the temporal variability of precipitation, events, intensity, and time interval on grassland AGBpeak was quantified by principal component regression and shown in a red–green–blue (RGB) composition map. The standardized importance values were used to calculate the vegetation sensitivity index to the temporal variability of precipitation (VSIP). Our results showed that the standardized VSIP was larger than 60 for only 15% of alpine grassland pixels and that AGBpeak did not change significantly for more than 60% of alpine grassland pixels over the past decades, which was likely due to the nonsignificant changes in the temporal variability of precipitation in most pixels. However, a U-shaped relationship was found between VSIP and GSP across the four representative grassland types, indicating that the sensitivity of grassland AGBpeak to precipitation was dependent on the types of grassland communities. Moreover, we found that the temporal variability of precipitation explained more of the field-measured AGBpeak variance than did the total amount of precipitation alone at the site scale, which implies that the mechanisms underlying how the temporal variability of precipitation controls the AGBpeak of alpine grasslands should be better understood at the local scale. We hypothesize that alpine grassland plants promptly respond to the temporal variability of precipitation to keep community biomass production more stable over time, but this conclusion should be further tested. Finally, we call for a long-term experimental study that includes multiple natural and anthropogenic factors together, such as warming, nitrogen deposition, and grazing and fencing, to better understand the mechanisms of alpine grassland stability on the Tibetan Plateau.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Fei Ren ◽  
Xiaoxia Yang ◽  
Huakun Zhou ◽  
Wenyan Zhu ◽  
Zhenhua Zhang ◽  
...  

Abstract High soil organic carbon content, extensive root biomass, and low nutrient availability make alpine grasslands an important ecosystem for assessing the influence of nutrient enrichment on soil respiration (SR). We conducted a four-year (2009–2012) field experiment in an alpine grassland on the Qinghai-Tibetan Plateau to examine the individual and combined effects of nitrogen (N, 100 kg ha−1year−1) and phosphorus (P, 50 kg ha−1year−1) addition on SR. We found that both N and P addition did not affect the overall growing-season SR but effects varied by year: with N addition SR increased in the first year but decreased during the last two years. However, while P addition did not affect SR during the first two years, SR increased during the last two years. No interactive effects of N and P addition were observed, and both N addition and P addition reduced heterotrophic respiration during the last year of the experiment. N and P addition affected SR via different processes: N mainly affected heterotrophic respiration, whereas P largely influenced autotrophic respiration. Our results highlight the divergent effects of N and P addition on SR and address the important potential of P enrichment for regulating SR and the carbon balance in alpine grasslands.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 154 ◽  
Author(s):  
Xuyang Lu ◽  
Shuqin Ma ◽  
Youchao Chen ◽  
Degyi Yangzom ◽  
Hongmao Jiang

Squalene is found in a large number of plants, animals, and microorganisms, as well as other sources, playing an important role as an intermediate in sterol biosynthesis. It is used widely in the food, cosmetics, and medicine industries because of its antioxidant, antistatic, and anti-carcinogenic properties. A higher natural squalene component of lipids is usually reported as being isolated to organisms living in harsh environments. In the Tibetan Plateau, which is characterized by high altitude, strong solar radiation, drought, low temperatures, and thin air, the squalene component was identified in five alpine grasslands soils using the pyrolysis gas chromatography–mass spectrometry (Py-GC/MS) technique. The relative abundance of squalene ranged from 0.93% to 10.66% in soils from the five alpine grasslands, with the highest value found in alpine desert and the lowest in alpine meadow. Furthermore, the relative abundance of squalene in alpine grassland soils was significantly negatively associated with soil chemical/microbial characteristics. These results indicate that the extreme environmental conditions of the Tibetan Plateau may stimulate the microbial biosynthesis of squalene, and the harsher the environment, the higher the relative abundance of soil squalene.


2020 ◽  
Vol 17 (9) ◽  
pp. 2161-2169
Author(s):  
Chang-shun Wang ◽  
Wang-wang Lyu ◽  
Li-li Jiang ◽  
Shi-ping Wang ◽  
Qi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document