scholarly journals Remote Sensing Estimation of Sea Surface Salinity from GOCI Measurements in the Southern Yellow Sea

2019 ◽  
Vol 11 (7) ◽  
pp. 775 ◽  
Author(s):  
Deyong Sun ◽  
Xiaoping Su ◽  
Zhongfeng Qiu ◽  
Shengqiang Wang ◽  
Zhihua Mao ◽  
...  

Knowledge about the spatiotemporal distribution of sea surface salinity (SSS) provides valuable and important information for understanding various marine biogeochemical processes and ecosystems, especially for those coastal waters significantly affected by human activities. Remote-sensing techniques have been used to monitor salinity in the open ocean with their advantages of wide-area surveys and real-time monitoring. However, potential challenges remain when using satellite data with coarse spatiotemporal resolutions, leading to a loss of valuable information. In the current study, based on the local dataset collected over the southern Yellow Sea (SYS), a region-customized algorithm was developed to estimate SSS by using the remote sensing reflectance. The model evaluations indicated that our algorithm yielded good SSS estimation, with a root-mean-square error (RMSE) of 0.29 psu and a mean absolute percentage error (MAPE) of 0.75%. Satellite-derived SSS results compared well with those derived from in situ observations, further suggesting the good performance of our developed algorithm for the study regions. We applied this algorithm to Geostationary Ocean Color Imager (GOCI) data for the month of August from 2011 to 2018 in the SYS, and produced the spatial distribution patterns of the SSS for August of each year. The SSS values were high in offshore waters and lower in coastal waters, especially in the Yangtze River estuary. The negative correlation between the monthly Changjiang River discharge (CRD) and SSS (R = −0.71, p < 0.001) near the Yangtze River estuary was observed, suggesting that the SSS distribution in the Yangtze River estuary was potentially influenced by the CRD. In offshore waters, the correlation between SSS and CRD was weak (R < 0.2), suggesting that the riverine discharge’s effect might be weak.

2021 ◽  
Vol 13 (10) ◽  
pp. 1875
Author(s):  
Wenping Xie ◽  
Jingsong Yang ◽  
Rongjiang Yao ◽  
Xiangping Wang

Soil salt-water dynamics in the Yangtze River Estuary (YRE) is complex and soil salinity is an obstacle to regional agricultural production and the ecological environment in the YRE. Runoff into the sea is reduced during the impoundment period as the result of the water-storing process of the Three Gorges Reservoir (TGR) in the upper reaches of the Yangtze River, which causes serious seawater intrusion. Soil salinity is a problem due to shallow and saline groundwater under serious seawater intrusion in the YRE. In this research, we focused on the temporal variation and spatial distribution characteristics of soil salinity in the YRE using geostatistics combined with proximally sensed information obtained by an electromagnetic induction (EM) survey method in typical years under the impoundment of the TGR. The EM survey with proximal sensing method was applied to perform soil salinity survey in field in the Yangtze River Estuary, allowing quick determination and quantitative assessment of spatial and temporal variation of soil salinity from 2006 to 2017. We developed regional soil salinity survey and mapping by coupling limited laboratory data with proximal sensed data obtained from EM. We interpreted the soil electrical conductivity by constructing a linear model between the apparent electrical conductivity data measured by an EM 38 device and the soil electrical conductivity (EC) of soil samples measured in laboratory. Then, soil electrical conductivity was converted to soil salt content (soil salinity g kg−1) through established linear regression model based on the laboratory data of soil salinity and soil EC. Semivariograms of regional soil salinity in the survey years were fitted and ordinary kriging interpolation was applied in interpolation and mapping of regional soil salinity. The cross-validation results showed that the prediction results were acceptable. The soil salinity distribution under different survey years was presented and the area of salt affected soil was calculated using geostatistics method. The results of spatial distribution of soil salinity showed that soil salinity near the riverbanks and coastlines was higher than that of inland. The spatial distribution of groundwater depth and salinity revealed that shallow groundwater and high groundwater salinity influenced the spatial distribution characteristics of soil salinity. Under long-term impoundment of the Three Gorges Reservoir, the variation of soil salinity in different hydrological years was analyzed. Results showed that the area affected by soil salinity gradually increased in different hydrological year types under the impoundment of the TGR.


2008 ◽  
Vol 28 (3) ◽  
pp. 1174-1182 ◽  
Author(s):  
Zuo Tao ◽  
Wang Jun ◽  
Jin Xianshi ◽  
Li Zhongyi ◽  
Tang Qisheng

Sign in / Sign up

Export Citation Format

Share Document