the southern yellow sea
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 44)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxiang Miao ◽  
Jie Xiao ◽  
Shiliang Fan ◽  
Yu Zang ◽  
Xuelei Zhang ◽  
...  

An epiphytic gammarid species, Apohyale sp., was abundant in the floating Ulva prolifera (U. prolifera), which forms large-scale green tides in the Yellow Sea (YSGT). Field observation and laboratory experiments were subsequently conducted to study the species identity, abundance, and grazing effects on the floating algal biomass. The abundance of Apohyale sp. showed great spatial variation and varied from 0.03 to 1.47 inds g−1 in the YSGT. In average, each gram of Apohyale sp. body mass can consume 0.43 and 0.60 g algal mass of U. prolifera per day, and the grazing rates varied among the algae cultured with different nutritional seawaters. It was estimated that grazing of Apohale sp. could efficiently reduce ~0.4 and 16.6% of the algal growth rates in Rudong and Qingdao, respectively. The U. prolifera fragments resulting from gnawing of Apohyale sp. had a higher growth rate and similar photosynthetic activities compared to the floating algae, indicating probably positive feedback on the floating algal biomass. This research corroborated the significant impact of Apohyale sp. on the floating algal mass of YSGT through the top-down control. However, further research is needed to understand the population dynamics of these primary predators and hence their correlation with the expansion or decline of YSGT, especially under the complex food webs in the southern Yellow Sea.


2021 ◽  
Vol 13 (19) ◽  
pp. 3811
Author(s):  
Deyu An ◽  
Dingfeng Yu ◽  
Xiangyang Zheng ◽  
Yan Zhou ◽  
Ling Meng ◽  
...  

Large scale green macroalgae blooms (MABs) caused by Ulva prolifera have occurred regularly in the Yellow Sea since 2007. In the MAB dissipation phase, the landing or sinking and decomposition of U. prolifera would alter the physical-chemical environment of seawater and cause ecological, environmental, and economic problems. To understand MAB dissipation features, we used multiple sensors to analyze the spatiotemporal variation of the MAB dissipation phase in the southern Yellow Sea. The results show the variation in the daily dissipation rate (DR) was inconsistent from year to year. Based on the DR variation, a simple method of estimating MAB dissipation days was proposed for the first time. Verification results of the method, from 2018 to 2020, showed the estimated dissipation days were relatively consistent with the results obtained by remote sensing imagery. From 2007 to 2020, the order in which macroalgae landed in the coastal cities of Shandong Peninsula can be roughly divided into two types. In one type, the macroalgae landed first in Rizhao, followed by Qingdao, Rushan, and Haiyang. In the other type, they landed in the reverse order. The MABs annual distribution density showed significant differences in the southern Yellow Sea. These results provided a basis for evaluating the MABs’ impact on marine ecology and formulating the green-tide prevention and control strategies.


Palaeoworld ◽  
2021 ◽  
Author(s):  
Xing-Wei Guo ◽  
Xun-Hua Zhang ◽  
Lai-Xing Cai ◽  
Hong-He Xu ◽  
Ning Yang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Xuefa Shi ◽  
Zhengquan Yao ◽  
Jianxing Liu ◽  
Shuqing Qiao ◽  
Yanguang Liu ◽  
...  

Transgression and regression deposits from the shallow continental margin provide information on orbital-scale variations in sea level, climate change, and local tectonics. In this study, we conduct a high-resolution chronological and sedimentological analysis of a 125-m core (NHH01) drilled in the southern Yellow Sea. We developed a high-resolution age model at the orbital timescale over the last ∼1 Myr by the astronomical tuning of the sediment grain size. Sedimentological analysis and environmental proxies reveal that the study area is characterized by cyclic alternations of neritic and littoral/fluvial deposits controlled by glacial–interglacial sea-level changes. These results confirm the earlier assumption that sea-level fluctuations play a dominant role in the sedimentary architecture of the southern Yellow Sea. Moreover, only low-frequency sea-level fluctuations (∼100 kyr) were preserved in the NHH01 sequence; however, additional high-frequency (∼40 kyr) sea-level variations were also present in the sediments of the shallower Bohai Sea. Despite the large spatial difference, this finding implies that the sedimentary environment in the eastern marginal seas of China had been influenced by the sea level as a whole over the last 1 Myr. The comparison of the sedimentary environment with other cores from the Bohai Sea, Yellow Sea, and coastal region, as well as records from Indonesia and Japan, reveals that a consistent initiation of large-scale marine transgression occurred at ∼0.8–1 Ma. This phenomenon was likely caused by the long duration of glacio-eustatic high sea-level stands following the Middle Pleistocene transition, which is characterized by a shift in glacial cycles from 40 to 100 kyr.


2021 ◽  
Vol 51 (1) ◽  
pp. 59-65
Author(s):  
Ying Xiong ◽  
Jian Yang ◽  
Tao Jiang ◽  
Hongbo Liu ◽  
Xiaming Zhong

Otolith chemical signatures are sufficiently stable across time to allow for accurate stock classification. The classification of the southern Yellow Sea population for Larimichthys polyactis (Bleeker, 1877) and its connectivity with others from 1962 is controversial. The study aimed to study the inter-annual variation in otolith strontium:calcium (Sr:Ca) ratios of L. polyactis to determine whether otolith natural tags are representative over long periods and can then be used for population structure classification. Spawning L. polyactis individuals were captured by stow nets in the same site of the southern Yellow Sea coastal waters during April–May in 2003, 2012, and 2013. EPMA (electron probe microanalysis) was used to determine the Sr:Ca ratios of a total of 25 otolith samples. Mann–Whitney U-test was used to test the differences of otolith Sr:Ca ratios from the core to edge for each otolith. One-way ANOVA was performed to compare the mean otolith Sr:Ca values among 2003, 2012, and 2013. Otoliths from 2003, 2012, and 2013 showed similar patterns of Sr:Ca ratios and Sr:Ca ratios could be divided into higher and lower phases in the core and remaining regions, respectively. Inter-annual significant differences for each high or low Sr:Ca phase of otoliths were not observed over short- (between 2012 and 2013) or long-time (between 2003 and 2012, and between 2003 and 2013) scales. Univariate contrasts across the adjacent year and decade classes were statistically similar. The Sr:Ca ratio signatures in the otolith were relatively stable across years and can be used as a reliable natural tag for connectivity assessments and stock identification with little or no genetic differentiation among L. polyactis populations. The short- and long-term temporal stability of otolith Sr:Ca ratios also revealed, the existence of stable L. polyactis stocks in the southern Yellow Sea, consistent with a previous finding of capture survey.


Sign in / Sign up

Export Citation Format

Share Document