scholarly journals WorldView-2 Data for Hierarchical Object-Based Urban Land Cover Classification in Kigali: Integrating Rule-Based Approach with Urban Density and Greenness Indices

2019 ◽  
Vol 11 (18) ◽  
pp. 2128 ◽  
Author(s):  
Mugiraneza ◽  
Nascetti ◽  
Ban

The emergence of high-resolution satellite data, such as WorldView-2, has opened the opportunity for urban land cover mapping at fine resolution. However, it is not straightforward to map detailed urban land cover and to detect urban deprived areas, such as informal settlements, in complex urban environments based merely on high-resolution spectral features. Thus, approaches integrating hierarchical segmentation and rule-based classification strategies can play a crucial role in producing high quality urban land cover maps. This study aims to evaluate the potential of WorldView-2 high-resolution multispectral and panchromatic imagery for detailed urban land cover classification in Kigali, Rwanda, a complex urban area characterized by a subtropical highland climate. A multi-stage object-based classification was performed using support vector machines (SVM) and a rule-based approach to derive 12 land cover classes with the input of WorldView-2 spectral bands, spectral indices, gray level co-occurrence matrix (GLCM) texture measures and a digital terrain model (DTM). In the initial classification, confusion existed among the informal settlements, the high- and low-density built-up areas, as well as between the upland and lowland agriculture. To improve the classification accuracy, a framework based on a geometric ruleset and two newly defined indices (urban density and greenness density indices) were developed. The novel framework resulted in an overall classification accuracy at 85.36% with a kappa coefficient at 0.82. The confusion between high- and low-density built-up areas significantly decreased, while informal settlements were successfully extracted with the producer and user’s accuracies at 77% and 90% respectively. It was revealed that the integration of an object-based SVM classification of WorldView-2 feature sets and DTM with the geometric ruleset and urban density and greenness indices resulted in better class separability, thus higher classification accuracies in complex urban environments.

Author(s):  
J. Jacinth Jennifer

<div><p class="IJARCSAbstract"><em>Satellite imagery paves way to obtain tangible information through remote sensing techniques.  It is necessary to classify the image in order to extract the features.  There exist various classification techniques and algorithms to retrieve various features from imagery.  As the technology development proceeds in a faster track it is necessary to compensate its advancements by developing new techniques for feature retrieval.  As far as high resolution satellite imagery are concerned object based feature retrieval and texture based feature retrieval techniques are gaining its importance.  The texture based feature retrieval has various techniques involved in it, among which Haralick’s texture parameters has much importance.  Thereby object based technique also has its own way of algorithms and processes for feature retrieval.  The eCognition software provides a platform for combining texture and object based technique.  It is well known from various journals that object based technique is best for classifying high resolution imagery.  Thus the image is primarily segmented into objects for classification.  The Haralick’s texture parameters which serve well in classification of urban land cover is chosen by computing statistical analysis.  Finally the chosen texture parameter is adopted in the classification of the objects.  The classified imagery is checked for accuracy and a high accuracy of 94.5% is obtained.</em></p></div>


Author(s):  
D. Amarsaikhan

Abstract. The aim of this research is to classify urban land cover types using an advanced classification method. As the input bands to the classification, the features derived from Landsat 8 and Sentinel 1A SAR data sets are used. To extract the reliable urban land cover information from the optical and SAR features, a rule-based classification algorithm that uses spatial thresholds defined from the contextual knowledge is constructed. The result of the constructed method is compared with the results of a standard classification technique and it indicates a higher accuracy. Overall, the study demonstrates that the multisource data sets can considerably improve the classification of urban land cover types and the rule-based method is a powerful tool to produce a reliable land cover map.


2020 ◽  
Vol 12 (2) ◽  
pp. 311 ◽  
Author(s):  
Chun Liu ◽  
Doudou Zeng ◽  
Hangbin Wu ◽  
Yin Wang ◽  
Shoujun Jia ◽  
...  

Urban land cover classification for high-resolution images is a fundamental yet challenging task in remote sensing image analysis. Recently, deep learning techniques have achieved outstanding performance in high-resolution image classification, especially the methods based on deep convolutional neural networks (DCNNs). However, the traditional CNNs using convolution operations with local receptive fields are not sufficient to model global contextual relations between objects. In addition, multiscale objects and the relatively small sample size in remote sensing have also limited classification accuracy. In this paper, a relation-enhanced multiscale convolutional network (REMSNet) method is proposed to overcome these weaknesses. A dense connectivity pattern and parallel multi-kernel convolution are combined to build a lightweight and varied receptive field sizes model. Then, the spatial relation-enhanced block and the channel relation-enhanced block are introduced into the network. They can adaptively learn global contextual relations between any two positions or feature maps to enhance feature representations. Moreover, we design a parallel multi-kernel deconvolution module and spatial path to further aggregate different scales information. The proposed network is used for urban land cover classification against two datasets: the ISPRS 2D semantic labelling contest of Vaihingen and an area of Shanghai of about 143 km2. The results demonstrate that the proposed method can effectively capture long-range dependencies and improve the accuracy of land cover classification. Our model obtains an overall accuracy (OA) of 90.46% and a mean intersection-over-union (mIoU) of 0.8073 for Vaihingen and an OA of 88.55% and a mIoU of 0.7394 for Shanghai.


2020 ◽  
Vol 12 (12) ◽  
pp. 1962 ◽  
Author(s):  
Stéphane Dupuy ◽  
Laurence Defrise ◽  
Valentine Lebourgeois ◽  
Raffaele Gaetano ◽  
Perrine Burnod ◽  
...  

High urbanization rates in cities lead to rapid changes in land uses, particularly in southern cities where population growth is fast. Urban and peri-urban agricultural land is often seen as available space for the city to expand, but at the same time, agricultural land provides many benefits to cities pertaining to food, employment, and eco-services. In this context, there is an urgent need to provide spatial information to support planning in complex urban systems. The challenge is to integrate analysis of agriculture and urban land-cover classes, and of their spatial and functional patterns. This paper takes up this challenge in Antananarivo (Madagascar), where agricultural plots and homes are interlocked and very small. It innovates by using a methodology already tested in rural settings, but never applied to urban environments. The key step of the analysis is to produce landscape zoning based on multisource satellite data to identify agri-urban functional areas within the city, and to explore their relationships. Our results demonstrate that the proposed classification method is well suited for mapping agriculture and urban land cover (overall accuracy = 76.56% for the 20 classes of level 3) in such a complex setting. The systemic analysis of urban agriculture patterns and functions can help policymakers and urban planners to design and build resilient cities.


Sign in / Sign up

Export Citation Format

Share Document