scholarly journals Deep Multi-Scale Recurrent Network for Synthetic Aperture Radar Images Despeckling

2019 ◽  
Vol 11 (21) ◽  
pp. 2462 ◽  
Author(s):  
Yuanyuan Zhou ◽  
Jun Shi ◽  
Xiaqing Yang ◽  
Chen Wang ◽  
Durga Kumar ◽  
...  

For the existence of speckles, many standard optical image processing methods, such as classification, segmentation, and registration, are restricted to synthetic aperture radar (SAR) images. In this work, an end-to-end deep multi-scale recurrent network (MSR-net) for SAR image despeckling is proposed. The multi-scale recurrent and weights sharing strategies are introduced to increase network capacity without multiplying the number of weights parameters. A convolutional long short-term memory (convLSTM) unit is embedded to capture useful information and helps with despeckling across scales. Meanwhile, the sub-pixel unit is utilized to improve the network efficiency. Besides, two criteria, edge feature keep ratio (EFKR) and feature point keep ratio (FPKR), are proposed to evaluate the performance of despeckling capacity for SAR, which can assess the retention ability of the despeckling algorithm to edge and feature information more effectively. Experimental results show that our proposed network can remove speckle noise while preserving the edge and texture information of images with low computational costs, especially in the low signal noise ratio scenarios. The peak signal to noise ratio (PSNR) of MSR-net can outperform traditional despeckling methods SAR-BM3D (Block-Matching and 3D filtering) by more than 2 dB for the simulated image. Furthermore, the adaptability of optical image processing methods to real SAR images can be enhanced after despeckling.

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2919 ◽  
Author(s):  
Agnieszka Chojka ◽  
Piotr Artiemjew ◽  
Jacek Rapiński

Interferometric Synthetic Aperture Radar (InSAR) data are often contaminated by Radio-Frequency Interference (RFI) artefacts that make processing them more challenging. Therefore, easy to implement techniques for artefacts recognition have the potential to support the automatic Permanent Scatterers InSAR (PSInSAR) processing workflow during which faulty input data can lead to misinterpretation of the final outcomes. To address this issue, an efficient methodology was developed to mark images with RFI artefacts and as a consequence remove them from the stack of Synthetic Aperture Radar (SAR) images required in the PSInSAR processing workflow to calculate the ground displacements. Techniques presented in this paper for the purpose of RFI detection are based on image processing methods with the use of feature extraction involving pixel convolution, thresholding and nearest neighbor structure filtering. As the reference classifier, a convolutional neural network was used.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4133 ◽  
Author(s):  
Bing Sun ◽  
Chuying Fang ◽  
Hailun Xu ◽  
Anqi Gao

In general, synthetic aperture radar (SAR) imaging and image processing are two sequential steps in SAR image processing. Due to the large size of SAR images, most image processing algorithms require image segmentation before processing. However, the existence of speckle noise in SAR images, as well as poor contrast and the uneven distribution of gray values in the same target, make SAR images difficult to segment. In order to facilitate the subsequent processing of SAR images, this paper proposes a new method that combines the back-projection algorithm (BPA) and a first-order gradient operator to enhance the edges of SAR images to overcome image segmentation problems. For complex-valued signals, the gradient operator was applied directly to the imaging process. The experimental results of simulated images and real images validate our proposed method. For the simulated scene, the supervised image segmentation evaluation indexes of our method have more than 1.18%, 11.2% and 11.72% improvement on probabilistic Rand index (PRI), variability index (VI), and global consistency error (GCE). The proposed imaging method will make SAR image segmentation and related applications easier.


2021 ◽  
Vol 14 (1) ◽  
pp. 25
Author(s):  
Kaiyang Ding ◽  
Junfeng Yang ◽  
Zhao Wang ◽  
Kai Ni ◽  
Xiaohao Wang ◽  
...  

Traditional ship identification systems have difficulty in identifying illegal or broken ships, but the wakes generated by ships can be used as a major feature for identification. However, multi-ship and multi-scale wake detection is also a big challenge. This paper combines the geometric and pixel characteristics of ships and their wakes in Synthetic Aperture Radar (SAR) images and proposes a method for multi-ship and multi-scale wake detection. This method first detects the highlight pixel area in the image and then generates specific windows around the centroid, thereby detecting wakes of different sizes in different areas. In addition, all wake components can be located completely based on wake clustering, the statistical features of wake axis pixels can be used to determine the visible length of the wake. Test results on the Gaofen-3 SAR image show the special potential of the method for wake detection.


Image Processing has emerged as an essential lookup domain in circuit branches for quite a few decades. SAR is a type of Radar. It is connected to pics of articles like scene. It applies e SAR receiving wide development to the target for acquiring better spatial resolution than what is got through customary beam-scanning radars. In digital image processing field, processing Synthetic Aperture Radar is unexpectedly gaining focus. Very similar to all image processing methods, issues such as edge detection, enhancement and noise reduction are vital lookup troubles in SAR images also. Of late, speckle noise has emerged as a massive issue. Because of its presence, the SAR Images are classified as robust and multiplicative noises. Effecting speckle noise reduction in Synthetic Aperture Radar photographs is pretty challenging. Synthetic Aperture radar and its description is used in the utility of Flood prediction mapping. In this paper we implemented a better methodology for de-speckling Synthetic Aperture Radar imagery by way of using Fuzzy Discontinuity adaptive Non neighborhood potential filter. Application of fuzzy strategy to Importance sampling unscented kalman filter produces better end result than compared with fuzzy frost filter and also the TMAV and ATMAV produces higher end result therefore it can be a satisfactory filter for de-speckling.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


Sign in / Sign up

Export Citation Format

Share Document