scholarly journals Ensemble-Based Hybrid Context-Aware Misbehavior Detection Model for Vehicular Ad Hoc Network

2019 ◽  
Vol 11 (23) ◽  
pp. 2852 ◽  
Author(s):  
Ghaleb ◽  
Maarof ◽  
Zainal ◽  
Alrimy ◽  
Alsaeedi ◽  
...  

Life-saving decisions in vehicular ad hoc networks (VANETs) depend on the availability of highly accurate, up-to-date, and reliable data exchanged by neighboring vehicles. However, spreading inaccurate, unreliable, and false data by intruders create traffic illusions that may cause loss of lives and assets. Although several solutions for misbehavior detection have been proposed to address these issues, those solutions lack adequate representation and the adaptability to vehicular context. The use of predefined static thresholds and lack of comprehensive context representation have rendered the existing solutions limited to specific scenarios and attack types, which impedes their generalizability. This paper addresses these limitations by proposing an ensemble-based hybrid context-aware misbehavior detection system (EHCA-MDS) model. EHCA-MDS has been developed in four phases, as follows. The static thresholds have been replaced by dynamic ones created on the fly by analyzing the spatial and temporal properties of the mobility information collected from neighboring vehicles. Kalman filter-based algorithms were used to collect the mobility information of neighboring vehicles. Three sets of features were then derived, each of which has a different perspective, namely data consistency, data plausibility, and vehicle behavior. These features were used to construct a dynamic context reference using the Hampel filter. The Hampel-based z-score was used to evaluate the vehicles based on their behavioral activities, data consistency, and plausibility. For comprehensive features representation, multifaceted, non-parametric-based statistical classifiers were constructed and updated online using a Hampel filter-based algorithm. For accurate representation, the output of the statistical classifiers, vehicles’ scores, context reference parameters, and the derived features were used as input to an ensemble learning-based algorithm. Such representation helps to identify the misbehaving vehicles more effectively. The proposed EHCA-MDS model was evaluated in the presence of different types of misbehaving vehicles under different context scenarios through extensive simulations, utilizing a real-world traffic dataset. The results show that the accuracy and robustness of the proposed EHCA-MDS under different vehicular dynamic context scenarios were higher than existing solutions, which confirms its feasibility and effectiveness to improve the performance of VANET critical applications.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 159119-159140 ◽  
Author(s):  
Fuad A. Ghaleb ◽  
Mohd Aizaini Maarof ◽  
Anazida Zainal ◽  
Bander Ali Saleh Al-Rimy ◽  
Faisal Saeed ◽  
...  

The number of deaths resulting from road accidents and mishaps has increased at an alarming rate over the years. Road transportation is the most popularly used means of transportation in developing countries like Nigeria and most of these road accidents are associated with reckless driving habits. Context-aware systems provide intelligent recommendations allowing digital devices to make correct and timely recommendations when required. Furthermore, in a Vehicular Ad-hoc Network (VANET), communication links between vehicles and roadside units are improved thus enabling vehicle and road safety. Hence, a non-intrusive driver behaviour detection system that incorporates context-aware monitoring features in VANET is proposed in this study. By making use of a one-dimensional highway (1D) road with one-way traffic movement and incorporating GSM technology, irregular actions (high speed, alcohol while driving, and pressure) exhibited by drivers are monitored and alerts are sent to other nearby vehicles and roadside units to avoid accidents. The proposed system adopted a real-time VANET prototype with three entities involved in the context-aware driver’s behaviour monitoring system namely, the driver, vehicle, and environment. The analytical tests with actual data set indicate that, when detected, the model measures the pace of the vehicle, the level of alcohol in the breath, and the driver's heart rate in-breath per minute (BPM). Therefore, it can be used as an appropriate model for the Context-aware driver’s monitoring system in VANET.


Author(s):  
Mannat Jot Singh Aneja ◽  
Tarunpreet Bhatia ◽  
Gaurav Sharma ◽  
Gulshan Shrivastava

This chapter describes how Vehicular Ad hoc Networks (VANETs) are classes of ad hoc networks that provides communication among various vehicles and roadside units. VANETs being decentralized are susceptible to many security attacks. A flooding attack is one of the major security threats to the VANET environment. This chapter proposes a hybrid Intrusion Detection System which improves accuracy and other performance metrics using Artificial Neural Networks as a classification engine and a genetic algorithm as an optimization engine for feature subset selection. These performance metrics have been calculated in two scenarios, namely misuse and anomaly. Various performance metrics are calculated and compared with other researchers' work. The results obtained indicate a high accuracy and precision and negligible false alarm rate. These performance metrics are used to evaluate the intrusion system and compare with other existing algorithms. The classifier works well for multiple malicious nodes. Apart from machine learning techniques, the effect of the network parameters like throughput and packet delivery ratio is observed.


Author(s):  
Rodrigo B. Soares ◽  
Eduardo F. Nakamura ◽  
Carlos M. S. Figueiredo ◽  
Antonio A. F. Loureiro

Sign in / Sign up

Export Citation Format

Share Document