scholarly journals Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion

2020 ◽  
Vol 12 (2) ◽  
pp. 213 ◽  
Author(s):  
Chengming Zhang ◽  
Yan Chen ◽  
Xiaoxia Yang ◽  
Shuai Gao ◽  
Feng Li ◽  
...  

When extracting land-use information from remote sensing imagery using image segmentation, obtaining fine edges for extracted objects is a key problem that is yet to be solved. In this study, we developed a new weight feature value convolutional neural network (WFCNN) to perform fine remote sensing image segmentation and extract improved land-use information from remote sensing imagery. The WFCNN includes one encoder and one classifier. The encoder obtains a set of spectral features and five levels of semantic features. It uses the linear fusion method to hierarchically fuse the semantic features, employs an adjustment layer to optimize every level of fused features to ensure the stability of the pixel features, and combines the fused semantic and spectral features to form a feature graph. The classifier then uses a Softmax model to perform pixel-by-pixel classification. The WFCNN was trained using a stochastic gradient descent algorithm; the former and two variants were subject to experimental testing based on Gaofen 6 images and aerial images that compared them with the commonly used SegNet, U-NET, and RefineNet models. The accuracy, precision, recall, and F1-Score of the WFCNN were higher than those of the other models, indicating certain advantages in pixel-by-pixel segmentation. The results clearly show that the WFCNN can improve the accuracy and automation level of large-scale land-use mapping and the extraction of other information using remote sensing imagery.

2014 ◽  
Vol 543-547 ◽  
pp. 2559-2565 ◽  
Author(s):  
Feng Hua Huang

In order to solve the problems in the traditional remote sensing image based on spectral information, such as low classification accuracy, different object with the same spectral features or the same object with the different spectral features, and limited sample quantity and so on, a remote sensing image classification method based on the support vector machine (SVM) including with textural features is proposed. Using Langqi Island of Fuzhou as experimental area, preprocessing and principal component analysis were made to initialize TM images, and the spectral features and GLCM-based textural features of ground objects were extracted and analyzed respectively. Then, the extraction, training and testing of samples based on the two types of features were finished for training various SVM classifiers, which were used for classifying land use in the experimental area. Through the maximum likelihood method, the BP neural network and the support vector machine (SVM), a crossed classification and contrast experiment was made to two different types of samples based on the simple spectral features and the features combined with texture respectively. The experimental results showed that the SVM classification method including textural features can effectively improve the accuracy of land use classification, and therefore it can be promoted better.


2018 ◽  
Vol 10 (11) ◽  
pp. 1737 ◽  
Author(s):  
Jinchao Song ◽  
Tao Lin ◽  
Xinhu Li ◽  
Alexander V. Prishchepov

Fine-scale, accurate intra-urban functional zones (urban land use) are important for applications that rely on exploring urban dynamic and complexity. However, current methods of mapping functional zones in built-up areas with high spatial resolution remote sensing images are incomplete due to a lack of social attributes. To address this issue, this paper explores a novel approach to mapping urban functional zones by integrating points of interest (POIs) with social properties and very high spatial resolution remote sensing imagery with natural attributes, and classifying urban function as residence zones, transportation zones, convenience shops, shopping centers, factory zones, companies, and public service zones. First, non-built and built-up areas were classified using high spatial resolution remote sensing images. Second, the built-up areas were segmented using an object-based approach by utilizing building rooftop characteristics (reflectance and shapes). At the same time, the functional POIs of the segments were identified to determine the functional attributes of the segmented polygon. Third, the functional values—the mean priority of the functions in a road-based parcel—were calculated by functional segments and segmental weight coefficients. This method was demonstrated on Xiamen Island, China with an overall accuracy of 78.47% and with a kappa coefficient of 74.52%. The proposed approach could be easily applied in other parts of the world where social data and high spatial resolution imagery are available and improve accuracy when automatically mapping urban functional zones using remote sensing imagery. It will also potentially provide large-scale land-use information.


Author(s):  
Filiberto Pla ◽  
Gema Gracia ◽  
Pedro García-Sevilla ◽  
Majid Mirmehdi ◽  
Xianghua Xie

Author(s):  
Y. Yang ◽  
H. T. Li ◽  
Y. S. Han ◽  
H. Y. Gu

Image segmentation is the foundation of further object-oriented image analysis, understanding and recognition. It is one of the key technologies in high resolution remote sensing applications. In this paper, a new fast image segmentation algorithm for high resolution remote sensing imagery is proposed, which is based on graph theory and fractal net evolution approach (FNEA). Firstly, an image is modelled as a weighted undirected graph, where nodes correspond to pixels, and edges connect adjacent pixels. An initial object layer can be obtained efficiently from graph-based segmentation, which runs in time nearly linear in the number of image pixels. Then FNEA starts with the initial object layer and a pairwise merge of its neighbour object with the aim to minimize the resulting summed heterogeneity. Furthermore, according to the character of different features in high resolution remote sensing image, three different merging criterions for image objects based on spectral and spatial information are adopted. Finally, compared with the commercial remote sensing software eCognition, the experimental results demonstrate that the efficiency of the algorithm has significantly improved, and the result can maintain good feature boundaries.


2019 ◽  
Vol 3 (2) ◽  
pp. 29
Author(s):  
Zachary Gichuru Mainuri ◽  
John M. Mironga ◽  
Samuel M. Mwonga

Drivers of land use change were captured by the use of DPSIR model where Drivers (D) represented human needs, Pressures (P), human activities, State (S), the ecosystem, Impact (I) services from the ecosystem and Response (R), the decisions taken by land users. Land sat MSS and Land sat ETM+ (path 185, row 31) were used in this study. The Land sat ETM+ image (June 1987, May, 2000 and July, 2014) was downloaded from USGS Earth Resources Observation Systems data website. Remote sensing image processing was performed by using ERDAS Imagine 9.1. Two land use/land cover (LULC) classes were established as forest and shrub land. Severe land cover changes was found to have occurred from 1987-2000, where shrub land reduced by -19%, and forestry reduced by -72%. In 2000 – 2014 shrub land reduced by-45%, and forestry reduced by -64%. Forestry and shrub land were found to be consistently reducing.


Sign in / Sign up

Export Citation Format

Share Document