scholarly journals A Multi-Level Attention Model for Remote Sensing Image Captions

2020 ◽  
Vol 12 (6) ◽  
pp. 939 ◽  
Author(s):  
Yangyang Li ◽  
Shuangkang Fang ◽  
Licheng Jiao ◽  
Ruijiao Liu ◽  
Ronghua Shang

The task of image captioning involves the generation of a sentence that can describe an image appropriately, which is the intersection of computer vision and natural language. Although the research on remote sensing image captions has just started, it has great significance. The attention mechanism is inspired by the way humans think, which is widely used in remote sensing image caption tasks. However, the attention mechanism currently used in this task is mainly aimed at images, which is too simple to express such a complex task well. Therefore, in this paper, we propose a multi-level attention model, which is a closer imitation of attention mechanisms of human beings. This model contains three attention structures, which represent the attention to different areas of the image, the attention to different words, and the attention to vision and semantics. Experiments show that our model has achieved better results than before, which is currently state-of-the-art. In addition, the existing datasets for remote sensing image captioning contain a large number of errors. Therefore, in this paper, a lot of work has been done to modify the existing datasets in order to promote the research of remote sensing image captioning.

2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 137355-137364 ◽  
Author(s):  
Zhengyuan Zhang ◽  
Wenkai Zhang ◽  
Wenhui Diao ◽  
Menglong Yan ◽  
Xin Gao ◽  
...  

2019 ◽  
Vol 11 (20) ◽  
pp. 2349 ◽  
Author(s):  
Zhengyuan Zhang ◽  
Wenhui Diao ◽  
Wenkai Zhang ◽  
Menglong Yan ◽  
Xin Gao ◽  
...  

Significant progress has been made in remote sensing image captioning by encoder-decoder frameworks. The conventional attention mechanism is prevalent in this task but still has some drawbacks. The conventional attention mechanism only uses visual information about the remote sensing images without considering using the label information to guide the calculation of attention masks. To this end, a novel attention mechanism, namely Label-Attention Mechanism (LAM), is proposed in this paper. LAM additionally utilizes the label information of high-resolution remote sensing images to generate natural sentences to describe the given images. It is worth noting that, instead of high-level image features, the predicted categories’ word embedding vectors are adopted to guide the calculation of attention masks. Representing the content of images in the form of word embedding vectors can filter out redundant image features. In addition, it can also preserve pure and useful information for generating complete sentences. The experimental results from UCM-Captions, Sydney-Captions and RSICD demonstrate that LAM can improve the model’s performance for describing high-resolution remote sensing images and obtain better S m scores compared with other methods. S m score is a hybrid scoring method derived from the AI Challenge 2017 scoring method. In addition, the validity of LAM is verified by the experiment of using true labels.


2019 ◽  
Vol 11 (6) ◽  
pp. 612 ◽  
Author(s):  
Xiangrong Zhang ◽  
Xin Wang ◽  
Xu Tang ◽  
Huiyu Zhou ◽  
Chen Li

Image captioning generates a semantic description of an image. It deals with image understanding and text mining, which has made great progress in recent years. However, it is still a great challenge to bridge the “semantic gap” between low-level features and high-level semantics in remote sensing images, in spite of the improvement of image resolutions. In this paper, we present a new model with an attribute attention mechanism for the description generation of remote sensing images. Therefore, we have explored the impact of the attributes extracted from remote sensing images on the attention mechanism. The results of our experiments demonstrate the validity of our proposed model. The proposed method obtains six higher scores and one slightly lower, compared against several state of the art techniques, on the Sydney Dataset and Remote Sensing Image Caption Dataset (RSICD), and receives all seven higher scores on the UCM Dataset for remote sensing image captioning, indicating that the proposed framework achieves robust performance for semantic description in high-resolution remote sensing images.


2021 ◽  
Vol 13 (7) ◽  
pp. 1243
Author(s):  
Wenxin Yin ◽  
Wenhui Diao ◽  
Peijin Wang ◽  
Xin Gao ◽  
Ya Li ◽  
...  

The detection of Thermal Power Plants (TPPs) is a meaningful task for remote sensing image interpretation. It is a challenging task, because as facility objects TPPs are composed of various distinctive and irregular components. In this paper, we propose a novel end-to-end detection framework for TPPs based on deep convolutional neural networks. Specifically, based on the RetinaNet one-stage detector, a context attention multi-scale feature extraction network is proposed to fuse global spatial attention to strengthen the ability in representing irregular objects. In addition, we design a part-based attention module to adapt to TPPs containing distinctive components. Experiments show that the proposed method outperforms the state-of-the-art methods and can achieve 68.15% mean average precision.


2021 ◽  
Vol 13 (5) ◽  
pp. 869
Author(s):  
Zheng Zhuo ◽  
Zhong Zhou

In recent years, the amount of remote sensing imagery data has increased exponentially. The ability to quickly and effectively find the required images from massive remote sensing archives is the key to the organization, management, and sharing of remote sensing image information. This paper proposes a high-resolution remote sensing image retrieval method with Gabor-CA-ResNet and a split-based deep feature transform network. The main contributions include two points. (1) For the complex texture, diverse scales, and special viewing angles of remote sensing images, A Gabor-CA-ResNet network taking ResNet as the backbone network is proposed by using Gabor to represent the spatial-frequency structure of images, channel attention (CA) mechanism to obtain stronger representative and discriminative deep features. (2) A split-based deep feature transform network is designed to divide the features extracted by the Gabor-CA-ResNet network into several segments and transform them separately for reducing the dimensionality and the storage space of deep features significantly. The experimental results on UCM, WHU-RS, RSSCN7, and AID datasets show that, compared with the state-of-the-art methods, our method can obtain competitive performance, especially for remote sensing images with rare targets and complex textures.


2022 ◽  
Vol 22 (3) ◽  
pp. 1-21
Author(s):  
Prayag Tiwari ◽  
Amit Kumar Jaiswal ◽  
Sahil Garg ◽  
Ilsun You

Self-attention mechanisms have recently been embraced for a broad range of text-matching applications. Self-attention model takes only one sentence as an input with no extra information, i.e., one can utilize the final hidden state or pooling. However, text-matching problems can be interpreted either in symmetrical or asymmetrical scopes. For instance, paraphrase detection is an asymmetrical task, while textual entailment classification and question-answer matching are considered asymmetrical tasks. In this article, we leverage attractive properties of self-attention mechanism and proposes an attention-based network that incorporates three key components for inter-sequence attention: global pointwise features, preceding attentive features, and contextual features while updating the rest of the components. Our model follows evaluation on two benchmark datasets cover tasks of textual entailment and question-answer matching. The proposed efficient Self-attention-driven Network for Text Matching outperforms the state of the art on the Stanford Natural Language Inference and WikiQA datasets with much fewer parameters.


Sign in / Sign up

Export Citation Format

Share Document