scholarly journals Erosion Process and Temporal Variations in the Soil Surface Roughness of Spoil Heaps under Multi-Day Rainfall Simulation

2020 ◽  
Vol 12 (14) ◽  
pp. 2192
Author(s):  
Jiaorong Lv ◽  
Yongsheng Xie ◽  
Han Luo

The extensive artificially accelerated erosion of spoil heaps on newly engineered landforms is a key ecological management point requiring better understanding. Soil surface roughness is a crucial factor influencing erosion processes; however, study on spoil heap erosion with a view of surface roughness is lacking. This study investigated the erosion processes and the spatiotemporal variation of surface roughness on spoil heaps, and then, analyzed how the roughness affected the hydrological and sediment yield characteristics. Sequences of four artificial rainstorms with constant rainfall intensity (90 mm/h) were applied to cone-shaped spoil heaps (ground radius 3.5 m, height 2.3 m) of a loess soil containing 30 mass percent rock fragments. The surface elevation was sampled by a laser scanner. For the surface roughness indicators, the root mean square height (rmsh) and the correlation length (cl) increased sharply during the first rainfall event, and in the last three rainfall events, rmsh increased slightly and cl showed a relative decrease. The initial rmsh/cl of the whole slope surface ranged from 0.063 to 0.135, and increased with the rainfall sequence, thus, indicating that the spoil heap surface became rougher. Increasing soil roughness in the rainfall sequence delayed the initial runoff time and increased the runoff yield. The average runoff coefficient of the spoil heaps was 0.658. The average erosion rate of each rainfall event can be simulated by a regression equation of the corresponding average runoff rate and median cl (R-square of 0.816). Soil slumping with an average volume of 0.014 m3 occurred in the first two rainfall events, thus, significantly changing the roughness and peak instant erosion rate. Together, the results revealed the effects of surface roughness on the erosion of spoil heaps and would provide a useful reference for soil loss prediction and control.

2020 ◽  
Vol 12 (1) ◽  
pp. 232-241
Author(s):  
Na Ta ◽  
Chutian Zhang ◽  
Hongru Ding ◽  
Qingfeng Zhang

AbstractTillage and slope will influence soil surface roughness that changes during rainfall events. This study tests this effect under controlled conditions quantified by geostatistical and fractal indices. When four commonly adopted tillage practices, namely, artificial backhoe (AB), artificial digging (AD), contour tillage (CT), and linear slope (CK), were prepared on soil surfaces at 2 × 1 × 0.5 m soil pans at 5°, 10°, or 20° slope gradients, artificial rainfall with an intensity of 60 or 90 mm h−1 was applied to it. Measurements of the difference in elevation points of the surface profiles were taken before rainfall and after rainfall events for sheet erosion. Tillage practices had a relationship with fractal indices that the surface treated with CT exhibited the biggest fractal dimension D value, followed by the surfaces AD, AB, and CK. Surfaces under a stronger rainfall tended to have a greater D value. Tillage treatments affected anisotropy differently and the surface CT had the strongest effect on anisotropy, followed by the surfaces AD, AB, and CK. A steeper surface would have less effect on anisotropy. Since the surface CT had the strongest effect on spatial variability or the weakest spatial autocorrelation, it had the smallest effect on runoff and sediment yield. Therefore, tillage CT could make a better tillage practice of conserving water and soil. Simultaneously, changes in semivariogram and fractal parameters for surface roughness were examined and evaluated. Fractal parameter – crossover length l – is more sensitive than fractal dimension D to rainfall action to describe vertical differences in soil surface roughness evolution.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4386
Author(s):  
Afshin Azizi ◽  
Yousef Abbaspour-Gilandeh ◽  
Tarahom Mesri-Gundoshmian ◽  
Aitazaz A. Farooque ◽  
Hassan Afzaal

Soil roughness is one of the most challenging issues in the agricultural domain and plays a crucial role in soil quality. The objective of this research was to develop a computerized method based on stereo vision technique to estimate the roughness formed on the agricultural soils. Additionally, soil till quality was investigated by analyzing the height of plow layers. An image dataset was provided in the real conditions of the field. For determining the soil surface roughness, the elevation of clods obtained from tillage operations was computed using a depth map. This map was obtained by extracting and matching corresponding keypoints as super pixels of images. Regression equations and coefficients of determination between the measured and estimated values indicate that the proposed method has a strong potential for the estimation of soil shallow roughness as an important physical parameter in tillage operations. In addition, peak fitting of tilled layers was applied to the height profile to evaluate the till quality. The results of this suggest that the peak fitting is an effective method of judging tillage quality in the fields.


2019 ◽  
Vol 49 ◽  
Author(s):  
José Geraldo da Silva ◽  
Adriano Stephan Nascente ◽  
Pedro Marques da Silveira

ABSTRACT The presence of straw hinders the sowing of soybean cultivated in succession to rice, in areas irrigated by flooding. This study aimed to evaluate the combination of different configurations of a rice harvester and subsequent activities in the operational and energetic demand of rice straw management and in the soil surface roughness, in order to cultivate soybean in succession. Three independent experiments were conducted in a completely randomized design, as well as evaluated the fuel consumption, effective operating speed, working capacity and final surface roughness of the ground. The energy costs of harvesting rice do not increase when the automated harvester operates with a spreader to distribute the straw on the ground and to avoid the formation of furrows. The presence of rice plant residues in the field increases the skidding of the tractor when pulling the knife-roller, with a consequent reduction of the operating speed, but this does not affect the operational capacity and the fuel consumption. The increase in the number of light harrowings, from one to two operations, in areas worked with knife-roller or intermediate harrow, requires more time and fuel in the management of the soil and rice straw, but leaves the ground with less surface roughness. The management system with knife-roller operation and two light harrowings is the most appropriate method to prepare the soil for soybean cultivation after rice, because it provides the best combination of technical and energetic performance.


Sign in / Sign up

Export Citation Format

Share Document