scholarly journals Using UAV-Based SOPC Derived LAI and SAFY Model for Biomass and Yield Estimation of Winter Wheat

2020 ◽  
Vol 12 (15) ◽  
pp. 2378
Author(s):  
Yang Song ◽  
Jinfei Wang ◽  
Jiali Shang ◽  
Chunhua Liao

Knowledge of sub-field yield potential is critical for guiding precision farming. The recently developed simulated observation of point cloud (SOPC) method can generate high spatial resolution winter wheat effective leaf area index (SOPC-LAIe) maps from the unmanned aerial vehicle (UAV)-based point cloud data without ground-based measurements. In this study, the SOPC-LAIe maps, for the first time, were applied to the simple algorithm for yield estimation (SAFY) to generate the sub-field biomass and yield maps. First, the dry aboveground biomass (DAM) measurements were used to determine the crop cultivar-specific parameters and simulated green leaf area index (LAI) in the SAFY model. Then, the SOPC-LAIe maps were converted to green LAI using a normalization approach. Finally, the multiple SOPC-LAIe maps were applied to the SAFY model to generate the final DAM and yield maps. The root mean square error (RMSE) between the estimated and measured yield is 88 g/m2, and the relative root mean squire error (RRMSE) is 15.2%. The pixel-based DAM and yield map generated in this study revealed clearly the within-field yield variation. This framework using the UAV-based SOPC-LAIe maps and SAFY model could be a simple and low-cost alternative for final yield estimation at the sub-field scale.

2019 ◽  
Vol 11 (15) ◽  
pp. 1791 ◽  
Author(s):  
Ali Rouzbeh Kargar ◽  
Richard MacKenzie ◽  
Gregory P. Asner ◽  
Jan van Aardt

Forests are an important part natural ecosystems, by for example providing food, fiber, habitat, and biodiversity, all of which contribute to stable natural systems. Assessing and modeling the structure and characteristics of forests, e.g., Leaf Area Index (LAI), volume, biomass, etc., can lead to a better understanding and management of these resources. In recent years, Terrestrial Laser Scanning (TLS) has been recognized as a tool that addresses many of the limitations of manual and traditional forest data collection methods. In this study, we propose a density-based approach for estimating the LAI in a structurally-complex forest environment, which contains variable and diverse structural attributes, e.g., non-circular stem forms, dense canopy and below-canopy vegetation cover, and a diverse species composition. In addition, 242 TLS scans were collected using a portable low-cost scanner, the Compact Biomass Lidar (CBL), in the Hawaii Volcanoes National Park (HAVO), Hawaii Island, USA. LAI also was measured for 242 plots in the site, using an AccuPAR LP-80 ceptometer. The first step after cleaning the point cloud involved detecting the higher forest canopy in the light detection and ranging (lidar) point clouds, using normal change rate assessment. We then estimated Leaf Area Density (LAD), using a voxel-based approach, and divided the canopy point cloud into five layers in the Z (vertical) direction. These five layers subsequently were divided into voxels in the X direction, where the size of these voxels were obtained based on inter-quartile analysis and the number of points in each voxel. We hypothesized that the intensity returned to the lidar system from woody materials, like branches, would be higher than from leaves, due to the liquid water absorption feature of the leaves and higher reflectance for woody material at the 905 nm laser wavelength. We also differentiated between foliar and woody materials using edge detection in the images from projected point clouds and evaluated the density of these regions to support our hypothesis. Density of points, or the number of points divided by the volume of a grid, in a 3D grid size of 0.1 m, was calculated for each of the voxels. The grid size was determined by investigating the size of the branches in the lower portion of the canopy. Subsequently, we fitted a Kernel Density Estimator (KDE) to these values, with the threshold set based on half of the area under the curve in each of the density distributions. All the grids with a density below the threshold were labeled as leaves, while those grids above the threshold were identified as non-leaves. Finally, we modeled LAI using the point densities derived from the TLS point clouds and the listed analysis steps. This model resulted in an R 2 value of 0.88. We also estimated the LAI directly from lidar data using the point densities and calculating LAD, which is defined as the total one-sided leaf area per unit volume. LAI can be obtained as the sum of the LAD values in all the voxels. The accuracy of LAI estimation was 90%, with an RMSE value of 0.31, and an average overestimation of 9 % in TLS-derived LAI, when compared to field-measured LAI. Algorithm performance mainly was affected by the vegetation density and complexity of the canopy structures. It is worth noting that, since the LAI values cannot be considered spatially independent throughout all the plots in this site, we performed semivariogram analysis on the field-measured LAI data. This analysis showed that the LAI values can be assumed to be independent in plots that are at least 30 m apart. As a result, we divided the data into six subsets in which the plots were 30 m spaced. The R 2 values for these subsets, based on modeling of the field-measured LAI using leaf point density values, ranged between 0.84–0.96. The results bode well for using this method for efficient, automatic, and accurate/precise estimation of LAI values in complex forest environments, using a low-cost, rapid-scan TLS.


Author(s):  
S. Jin ◽  
M. Tamura ◽  
J. Susaki

Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observation geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAI/effective LAI from remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model. Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was 98.28 %. We finally calculated the effective LAI of the tree with 6 × 6 assumed observation directions.


2008 ◽  
Vol 23 (7) ◽  
pp. 876-892 ◽  
Author(s):  
Benoît Duchemin ◽  
Philippe Maisongrande ◽  
Gilles Boulet ◽  
Iskander Benhadj

2015 ◽  
Vol 204 ◽  
pp. 106-121 ◽  
Author(s):  
Jianxi Huang ◽  
Liyan Tian ◽  
Shunlin Liang ◽  
Hongyuan Ma ◽  
Inbal Becker-Reshef ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document