scholarly journals Estimating Effective Leaf Area Index of Winter Wheat Using Simulated Observation on Unmanned Aerial Vehicle-Based Point Cloud Data

Author(s):  
Yang Song ◽  
Jinfei Wang ◽  
Jiali Shang
2020 ◽  
Vol 12 (15) ◽  
pp. 2378
Author(s):  
Yang Song ◽  
Jinfei Wang ◽  
Jiali Shang ◽  
Chunhua Liao

Knowledge of sub-field yield potential is critical for guiding precision farming. The recently developed simulated observation of point cloud (SOPC) method can generate high spatial resolution winter wheat effective leaf area index (SOPC-LAIe) maps from the unmanned aerial vehicle (UAV)-based point cloud data without ground-based measurements. In this study, the SOPC-LAIe maps, for the first time, were applied to the simple algorithm for yield estimation (SAFY) to generate the sub-field biomass and yield maps. First, the dry aboveground biomass (DAM) measurements were used to determine the crop cultivar-specific parameters and simulated green leaf area index (LAI) in the SAFY model. Then, the SOPC-LAIe maps were converted to green LAI using a normalization approach. Finally, the multiple SOPC-LAIe maps were applied to the SAFY model to generate the final DAM and yield maps. The root mean square error (RMSE) between the estimated and measured yield is 88 g/m2, and the relative root mean squire error (RRMSE) is 15.2%. The pixel-based DAM and yield map generated in this study revealed clearly the within-field yield variation. This framework using the UAV-based SOPC-LAIe maps and SAFY model could be a simple and low-cost alternative for final yield estimation at the sub-field scale.


Author(s):  
S. Jin ◽  
M. Tamura ◽  
J. Susaki

Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observation geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAI/effective LAI from remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model. Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was 98.28 %. We finally calculated the effective LAI of the tree with 6 × 6 assumed observation directions.


2019 ◽  
Vol 11 (23) ◽  
pp. 6829 ◽  
Author(s):  
Umut Hasan ◽  
Mamat Sawut ◽  
Shuisen Chen

The leaf area index (LAI) is not only an important parameter for monitoring crop growth, but also an important input parameter for crop yield prediction models and hydrological and climatic models. Several studies have recently been conducted to estimate crop LAI using unmanned aerial vehicle (UAV) multispectral and hyperspectral data. However, there are few studies on estimating the LAI of winter wheat using unmanned aerial vehicle (UAV) RGB images. In this study, we estimated the LAI of winter wheat at the jointing stage on simple farmland in Xinjiang, China, using parameters derived from UAV RGB images. According to gray correlation analysis, UAV RGB-image parameters such as the Visible Atmospherically Resistant Index (VARI), the Red Green Blue Vegetation Index (RGBVI), the Digital Number (DN) of Blue Channel (B) and the Green Leaf Algorithm (GLA) were selected to develop models for estimating the LAI of winter wheat. The results showed that it is feasible to use UAV RGB images for inverting and mapping the LAI of winter wheat at the jointing stage on the field scale, and the partial least squares regression (PLSR) model based on the VARI, RGBVI, B and GLA had the best prediction accuracy (R2 = 0.776, root mean square error (RMSE) = 0.468, residual prediction deviation (RPD) = 1.838) among all the regression models. To conclude, UAV RGB images not only have great potential in estimating the LAI of winter wheat, but also can provide more reliable and accurate data for precision agriculture management.


2021 ◽  
Vol 13 (15) ◽  
pp. 3036
Author(s):  
Jinling Song ◽  
Xiao Zhu ◽  
Jianbo Qi ◽  
Yong Pang ◽  
Lei Yang ◽  
...  

Understory vegetation plays an important role in the structure and function of forest ecosystems. Light detection and ranging (LiDAR) can provide understory information in the form of either point cloud or full-waveform data. Point cloud data have a remarkable ability to represent the three-dimensional structures of vegetation, while full-waveform data contain more detailed information on the interactions between laser pulses and vegetation; both types have been widely used to estimate various forest canopy structural parameters, including leaf area index (LAI). Here, we present a new method for quantifying understory LAI in a temperate forest by combining the advantages of both types of LiDAR data. To achieve this, we first estimated the vertical distribution of the gap probability using point cloud data to automatically determine the height boundary between overstory and understory vegetation at the plot level. We then deconvolved the full-waveform data to remove the blurring effect caused by the system pulse to restore the vertical resolution of the LiDAR system. Subsequently, we decomposed the deconvolved data and integrated the plot-level boundary height to differentiate the waveform components returned from the overstory, understory, and soil layers. Finally, we modified the basic LiDAR equations introducing understory leaf spectral information to quantify the understory LAI. Our results, which were validated against ground-based measurements, show that the new method produced a good estimation of the understory LAI with an R2 of 0.54 and a root-mean-square error (RMSE) of 0.21. Our study demonstrates that the understory LAI can be successfully quantified through the combined use of point cloud and full-waveform LiDAR data.


2021 ◽  
Author(s):  
Shuang Wu ◽  
Lei Deng ◽  
Lijie Guo ◽  
Yanjie Wu

Abstract Background: Leaf Area Index (LAI) is half of the amount of leaf area per unit horizontal ground surface area. Consequently, accurate vegetation extraction in remote sensing imagery is critical for LAI estimation. However, most studies do not fully exploit the advantages of Unmanned Aerial Vehicle (UAV) imagery with high spatial resolution, such as not removing the background (soil and shadow, etc.). Furthermore, the advancement of multi-sensor synchronous observation and integration technology allows for the simultaneous collection of canopy spectral, structural, and thermal data, making it possible for data fusion.Methods: To investigate the potential of high-resolution UAV imagery combined with multi-sensor data fusion in LAI estimation. High-resolution UAV imagery was obtained with a multi-sensor integrated MicaSense Altum camera to extract the wheat canopy's spectral, structural, and thermal features. After removing the soil background, all features were fused, and LAI was estimated using Random Forest and Support Vector Machine Regression.Result: The results show that: (1) the soil background reduced the accuracy of the LAI prediction, and soil background could be effectively removed by taking advantage of high-resolution UAV imagery. After removing the soil background, the LAI prediction accuracy improved significantly, R2 raised by about 0.27, and RMSE fell by about 0.476. (2) The fusion of multi-sensor synchronous observation data improved LAI prediction accuracy and achieved the best accuracy (R2 = 0.815 and RMSE = 1.023). (3) When compared to other variables, 23 CHM, NRCT, NDRE, and BLUE are crucial for LAI estimation. Even the simple Multiple Linear Regression model could achieve high prediction accuracy (R2 = 0.679 and RMSE = 1.231), providing inspiration for rapid and efficient LAI prediction.Conclusions: The method of this study can be transferred to other sites with more extensive areas or similar agriculture structures, which will facilitate agricultural production and management.


2013 ◽  
Vol 115 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Juan I. Córcoles ◽  
Jose F. Ortega ◽  
David Hernández ◽  
Miguel A. Moreno

Sign in / Sign up

Export Citation Format

Share Document