scholarly journals Mapping Urban Tree Cover Changes Using Object-Based Convolution Neural Network (OB-CNN)

2020 ◽  
Vol 12 (18) ◽  
pp. 3017
Author(s):  
Shirisa Timilsina ◽  
Jagannath Aryal ◽  
Jamie B. Kirkpatrick

Urban trees provide social, economic, environmental and ecosystem services benefits that improve the liveability of cities and contribute to individual and community wellbeing. There is thus a need for effective mapping, monitoring and maintenance of urban trees. Remote sensing technologies can effectively map and monitor urban tree coverage and changes over time as an efficient and low-cost alternative to field-based measurements, which are time consuming and costly. Automatic extraction of urban land cover features with high accuracy is a challenging task, and it demands object based artificial intelligence workflows for efficiency and thematic accuracy. The aim of this research is to effectively map urban tree cover changes and model the relationship of such changes with socioeconomic variables. The object-based convolutional neural network (CNN) method is illustrated by mapping urban tree cover changes between 2005 and 2015/16 using satellite, Google Earth imageries and Light Detection and Ranging (LiDAR) datasets. The training sample for CNN model was generated by Object Based Image Analysis (OBIA) using thresholds in a Canopy Height Model (CHM) and the Normalised Difference Vegetation Index (NDVI). The tree heatmap produced from the CNN model was further refined using OBIA. Tree cover loss, gain and persistence was extracted, and multiple regression analysis was applied to model the relationship with socioeconomic variables. The overall accuracy and kappa coefficient of tree cover extraction was 96% and 0.77 for 2005 images and 98% and 0.93 for 2015/16 images, indicating that the object-based CNN technique can be effectively implemented for urban tree coverage mapping and monitoring. There was a decline in tree coverage in all suburbs. Mean parcel size and median household income were significantly related to tree cover loss (R2 = 58.5%). Tree cover gain and persistence had positive relationship with tertiary education, parcel size and ownership change (gain: R2 = 67.8% and persistence: R2 = 75.3%). The research findings demonstrated that remote sensing data with intelligent processing can contribute to the development of policy input for management of tree coverage in cities.

Author(s):  
S. Timilsina ◽  
S. K. Sharma ◽  
J. Aryal

Abstract. Urban trees offer significant benefits for improving the sustainability and liveability of cities, but its monitoring is a major challenge for urban planners. Remote-sensing based technologies can effectively detect, monitor and quantify urban tree coverage as an alternative to field-based measurements. Automatic extraction of urban land cover features with high accuracy is a challenging task and it demands artificial intelligence workflows for efficiency and thematic quality. In this context, the objective of this research is to map urban tree coverage per cadastral parcel of Sandy Bay, Hobart from very high-resolution aerial orthophoto and LiDAR data using an Object Based Convolution Neural Network (CNN) approach. Instead of manual preparation of a large number of required training samples, automatically classified Object based image analysis (OBIA) output is used as an input samples to train CNN method. Also, CNN output is further refined and segmented using OBIA to assess the accuracy. The result shows 93.2% overall accuracy for refined CNN classification. Similarly, the overlay of improved CNN output with cadastral parcel layer shows that 21.5% of the study area is covered by trees. This research demonstrates that the accuracy of image classification can be improved by using a combination of OBIA and CNN methods. Such a combined method can be used where manual preparation of training samples for CNN is not preferred. Also, our results indicate that the technique can be implemented to calculate parcel level statistics for urban tree coverage that provides meaningful metrics to guide urban planning and land management practices.


2021 ◽  
Vol 6 (16) ◽  
pp. 181-188
Author(s):  
Helmi Hamzah ◽  
Noriah Othman ◽  
Norainiratna Badrulhisham ◽  
Lina Karlinasari

Urban trees are exposed to "unintentional vandalism" during poorly skilled pruning practices that can lead to tree structure damage. This causes harmful consequences that affect tree performance in terms of the ecosystem services they contribute. This study aims to explore the relationship between unintentional tree vandalism and poorly skilled pruning practices in tree maintenance by analysing qualitative and quantitative data from tree workers contracted by selected Malaysian local authorities and tree care experts. The results showed that insufficient tree pruning knowledge leads to unintentional vandalism in tree pruning practices. Keywords: Tree management; unskilled tree pruning; unintentional tree vandalism; urban tree eISSN: 2398-4287© 2021. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v6i16.2633


2012 ◽  
Vol 49 (3) ◽  
pp. 428-449 ◽  
Author(s):  
Zoltan Szantoi ◽  
Francisco Escobedo ◽  
John Wagner ◽  
Joysee M. Rodriguez ◽  
Scot Smith

Sign in / Sign up

Export Citation Format

Share Document