scholarly journals Plume Height Time-Series Retrieval Using Shadow in Single Spatial Resolution Satellite Images

2020 ◽  
Vol 12 (23) ◽  
pp. 3951
Author(s):  
Sophie Pailot-Bonnétat ◽  
Andrew J. L. Harris ◽  
Sonia Calvari ◽  
Marcello De Michele ◽  
Lucia Gurioli

Volcanic plume height is a key parameter in retrieving plume ascent and dispersal dynamics, as well as eruption intensity; all of which are crucial for assessing hazards to aircraft operations. One way to retrieve cloud height is the shadow technique. This uses shadows cast on the ground and the sun geometry to calculate cloud height. This technique has, however, not been frequently used, especially not with high-spatial resolution (30 m pixel) satellite data. On 26 October 2013, Mt Etna (Sicily, Italy) produced a lava fountain feeding an ash plume that drifted SW and through the approach routes to Catania international airport. We compared the proximal plume height time-series obtained from fixed monitoring cameras with data retrieved from a Landsat-8 Operational Land Imager image, with results being in good agreement. The application of the shadow technique to a single high-spatial resolution image allowed us to fully document the ascent and dispersion history of the plume–cloud system. We managed to do this over a distance of 60 km and a time period of 50 min, with a precision of a few seconds and vertical error on plume altitude of ±200 m. We converted height with distance to height with time using the plume dispersion velocity, defining a bent-over plume that settled to a neutral buoyancy level with distance. Potentially, the shadow technique defined here allows downwind plume height profiles and mass discharge rate time series to be built over distances of up to 260 km and periods of 24 h, depending on vent location in the image, wind speed, and direction.

2021 ◽  
Vol 13 (14) ◽  
pp. 2675
Author(s):  
Stefan Mayr ◽  
Igor Klein ◽  
Martin Rutzinger ◽  
Claudia Kuenzer

Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product’s performance regarding mixed water/non-water pixels by an average of 11.6% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series.


2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Jefferson Francisco Soares ◽  
Gláucia Miranda Ramirez ◽  
Mirléia Aparecida de Carvalho ◽  
Marcelo de Carvalho Alves ◽  
Christiany Mattioli Sarmiento ◽  
...  

The maintenance of riparian forests is considered one of the main vegetative practices for mitigating the degradation of water resources and is mandatory by law. However, in Brazil there is still a progressive and constant decharacterization of these areas. Facing this reality, it is necessary to broaden researches that identify the occurring changes and provide efficient solutions at a fast pace and low cost. Remote sensing techniques show great application potential in characterizing natural resources. The objective of this work was to map, to characterize the land use and occupation and to verify the best method of high spatial resolution image classification of the Permanent Preservation Areas of the Funil Hydroelectric Power Plant reservoir, located between the municipalities of Lavras, Perdões, Bom Sucesso, Ibituruna, Ijací and Itumirim, in the state of Minas Gerais. The methods used to classify the high spatial resolution image from the Quickbird satellite were visual, object-oriented and pixel-by-pixel. Results showed the best method for mapping land use and occupation of the study area was object-oriented classification using the K-nearest neighbor algorithm, with kappa coefficient of 0.88 and global accuracy of 91.40%.


2019 ◽  
Vol 11 (22) ◽  
pp. 2606 ◽  
Author(s):  
Zhiqiang Li ◽  
Chengqi Cheng

The increasing availability of sensors enables the combination of a high-spatial-resolution panchromatic image and a low-spatial-resolution multispectral image, which has become a hotspot in recent years for many applications. To address the spectral and spatial distortions that adversely affect the conventional methods, a pan-sharpening method based on a convolutional neural network (CNN) architecture is proposed in this paper, where the low-spatial-resolution multispectral image is upgraded and integrated with the high-spatial-resolution panchromatic image to produce a new multispectral image with high spatial resolution. Based on the pyramid structure of the CNN architecture, the proposed method has high learning capacity to generate more representative and robust hierarchical features for construction tasks. Moreover, the highly nonlinear fusion process can be effectively simulated by stacking several linear filtering layers, which is suitable for learning the complex mapping relationship between a high-spatial-resolution panchromatic and low-spatial-resolution multispectral image. Both qualitative and quantitative experimental analyses were carried out on images captured from a Landsat 8 on-board operational land imager (LOI) sensor to demonstrate the method’s performance. The results regarding the sensitivity analysis of the involved parameters indicate the effects of parameters on the performance of our CNN-based pan-sharpening approach. Additionally, our CNN-based pan-sharpening approach outperforms other existing conventional pan-sharpening methods with a more promising fusion result for different landcovers, with differences in Erreur Relative Globale Adimensionnelle de Synthse (ERGAS), root-mean-squared error (RMSE), and spectral angle mapper (SAM) of 0.69, 0.0021, and 0.81 on average, respectively.


2019 ◽  
Vol 11 (11) ◽  
pp. 1266 ◽  
Author(s):  
Mingzheng Zhang ◽  
Dehai Zhu ◽  
Wei Su ◽  
Jianxi Huang ◽  
Xiaodong Zhang ◽  
...  

Continuous monitoring of crop growth status using time-series remote sensing image is essential for crop management and yield prediction. The growing season of summer corn in the North China Plain with the period of rain and hot, which makes the acquisition of cloud-free satellite imagery very difficult. Therefore, we focused on developing image datasets with both a high temporal resolution and medium spatial resolution by harmonizing the time-series of MOD09GA Normalized Difference Vegetation Index (NDVI) images and 30-m-resolution GF-1 WFV images using the improved Kalman filter model. The harmonized images, GF-1 images, and Landsat 8 images were then combined and used to monitor the summer corn growth from 5th June to 6th October, 2014, in three counties of Hebei Province, China, in conjunction with meteorological data and MODIS Evapotranspiration Data Set. The prediction residuals ( Δ P R K ) in NDVI between the GF-1 observations and the harmonized images was in the range of −0.2 to 0.2 with Gauss distribution. Moreover, the obtained phenological curves manifested distinctive growth features for summer corn at field scales. Changes in NDVI over time were more effectively evaluated and represented corn growth trends, when considered in conjunction with meteorological data and MODIS Evapotranspiration Data Set. We observed that the NDVI of summer corn showed a process of first decreasing and then rising in the early growing stage and discuss how the temperature and moisture of the environment changed with the growth stage. The study demonstrated that the synthesized dataset constructed using this methodology was highly accurate, with high temporal resolution and medium spatial resolution and it was possible to harmonize multi-source remote sensing imagery by the improved Kalman filter for long-term field monitoring.


Sign in / Sign up

Export Citation Format

Share Document