scholarly journals High Resolution Digital Terrain Models of Mercury

2020 ◽  
Vol 12 (23) ◽  
pp. 3989
Author(s):  
Moritz Tenthoff ◽  
Kay Wohlfarth ◽  
Christian Wöhler

We refined our Shape from Shading (SfS) algorithm, which has previously been used to create digital terrain models (DTMs) of the Lunar and Martian surfaces, to generate high-resolution DTMs of Mercury from MESSENGER imagery. To adapt the reconstruction procedure to the specific conditions of Mercury and the available imagery, we introduced two methodic innovations. First, we extended the SfS algorithm to enable the 3D-reconstruction from image mosaics. Because most mosaic tiles were acquired at different times and under various illumination conditions, the brightness of adjacent tiles may vary. Brightness variations that are not fully captured by the reflectance model may yield discontinuities at tile borders. We found that the relaxation of the constraint for a continuous albedo map improves the topographic results of an extensive region removing discontinuities at tile borders. The second innovation enables the generation of accurate DTMs from images with substantial albedo variations, such as hollows. We employed an iterative procedure that initializes the SfS algorithm with the albedo map that was obtained by the previous iteration step. This approach converges and yields a reasonable albedo map and topography. With these approaches, we generated DTMs of several science targets such as the Rachmaninoff basin, Praxiteles crater, fault lines, and several hollows. To evaluate the results, we compared our DTMs with stereo DTMs and laser altimeter data. In contrast to coarse laser altimetry tracks and stereo algorithms, which tend to be affected by interpolation artifacts, SfS can generate DTMs almost at image resolution. The root mean squared errors (RMSE) at our target sites are below the size of the horizontal image resolution. For some targets, we could achieve an effective resolution of less than 10 m/pixel, which is the best resolution of Mercury to date. We critically discuss the limitations of the evaluation methodology.

Icarus ◽  
2014 ◽  
Vol 243 ◽  
pp. 78-90 ◽  
Author(s):  
P. Gläser ◽  
F. Scholten ◽  
D. De Rosa ◽  
R. Marco Figuera ◽  
J. Oberst ◽  
...  

Author(s):  
Nicolò Borin ◽  
Cristina Re ◽  
Emanuele Simioni ◽  
Stefano Debei ◽  
Gabriele Cremonese

AbstractBepiColombo mission will provide Digital Terrain Models of the surface of Mercury by means of the stereo channel of the SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) imaging package onboard. The work here described presents a novel approach for the creation of higher resolution stereo products using the high-resolution channel of SIMBIO-SYS. Being the camera rigidly integrated with the spacecraft, this latter must be tilted to acquire stereo pairs necessary for the 3D reconstruction. A new method for image simulation and stereo reconstruction is presented in this work, where the input data are chosen as closely as possible to the real mission parameters. Different simulations are executed changing the illumination conditions and the stereo angles. The Digital Terrain Models obtained are evaluated and an analysis of the best acquisition conditions is performed, helping to improve the image acquisition strategy of BepiColombo mission. In addition, a strategy for the creation of a mosaic from different images acquired with the high-resolution channel of SIMBIO-SYS is explained, giving the possibility to obtain tridimensional products of extended targets.


Geologos ◽  
2014 ◽  
Vol 20 (4) ◽  
pp. 289-301 ◽  
Author(s):  
Andrzej Świąder

Abstract Digital Terrain Models (DTMs) produced from stereoscopic, submeter-resolution High Resolution Imaging Science Experiment (HiRISE) imagery provide a solid basis for all morphometric analyses of the surface of Mars. In view of the fact that a more effective use of DTMs is hindered by complicated and time-consuming manual handling, the automated process provided by specialists of the Ames Intelligent Robotics Group (NASA), Ames Stereo Pipeline, constitutes a good alternative. Four DTMs, covering the global dichotomy boundary between the southern highlands and northern lowlands along the line of the presumable Arabia shoreline, were produced and analysed. One of them included forms that are likely to be indicative of an oceanic basin that extended across the lowland northern hemisphere of Mars in the geological past. The high resolution DTMs obtained were used in the process of landscape visualisation.


2021 ◽  
pp. 1-8
Author(s):  
Kelsey M. Reese ◽  
Sean Field

Abstract Full-coverage pedestrian survey to record cultural features on unexplored archaeological landscapes is costly in terms of time, money, and personnel. Over the past two decades, researchers have implemented remote sensing and landscape data collection techniques using unmanned aerial vehicles (UAVs) to combat some of these burdens, but the initial cost of equipment, software, and processing power has hindered the ubiquitous implementation of UAV technology as an accessible companion tool to traditional archaeological survey. This article presents a free and open-source, technology-independent analytical framework for the collection and processing of UAV images to produce high-resolution digital terrain models limited only by the equipment available to the researcher. Results from the free and open-source protocol are directly compared to those produced using proprietary software to illustrate the capabilities of freely available data processing tools for UAV-collected images. By replicating the methods outlined here, researchers should be able to identify and target areas of interest to increase fieldwork efficiency, decrease costs of implementing this technology, and produce high-resolution digital terrain models to conduct spatial analyses that pursue a deeper understanding of cultural landscapes.


Author(s):  
M. R. Henriksen ◽  
M. R. Manheim ◽  
E. J. Speyerer ◽  
M. S. Robinson ◽  

The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that acquire meter scale imaging. Stereo observations are acquired by imaging from two or more orbits, including at least one off-nadir slew. Digital terrain models (DTMs) generated from the stereo observations are controlled to Lunar Orbiter Laser Altimeter (LOLA) elevation profiles. With current processing methods, digital terrain models (DTM) have absolute accuracies commensurate than the uncertainties of the LOLA profiles (~10 m horizontally and ~1 m vertically) and relative horizontal and vertical precisions better than the pixel scale of the DTMs (2 to 5 m). The NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics, enabling detailed characterization of large geomorphic features and providing a key resource for future exploration planning. Currently, two percent of the lunar surface is imaged in NAC stereo and continued acquisition of stereo observations will serve to strengthen our knowledge of the Moon and geologic processes that occur on all the terrestrial planets.


Sign in / Sign up

Export Citation Format

Share Document