scholarly journals Tropical Forest and Wetland Losses and the Role of Protected Areas in Northwestern Belize, Revealed from Landsat and Machine Learning

2021 ◽  
Vol 13 (3) ◽  
pp. 379
Author(s):  
Colin Doyle ◽  
Timothy Beach ◽  
Sheryl Luzzadder-Beach

Changes in land-use and land-cover, including both agricultural expansion and the establishment of protected areas, have altered the landscape pattern and extent of forest and wetland cover in the tropics. In Central America, land-use and land-cover change is also threatening the cultural resources of the region’s ancient Maya heritage since many ancient sites have been degraded by burning, deforestation, and plowing. In this study of Orange Walk District of northern Belize, from the 1980s to the present, we used multitemporal Landsat data with a random forest classifier to reveal trends in land-use and land-cover change and the increasing loss of forest and wetlands. We develop a random forest classifier that is time-generalized to map land-use and land-cover across the entire Landsat record, including Landsat 4, 5, 7, and 8, with a single algorithm. Including multiyear and seasonal composites was important for obtaining cloud-free coverage and distinguishing between different land-use and land-cover types. Early deforestation (1984–1987) was in small patches scattered across the landscape and likely driven by small scale agriculture such as milpa and smaller area tractor and horse-drawn plowing. The establishment of protected areas in the late 1980s and early 1990s allowed for forest regrowth in these areas, while wetland losses were high at 15%. The transition to industrial agriculture in the 2000s, however, drove a 43.6% expansion of agriculture and a 7.5% loss of forest and a 28.2% loss of wetlands during the ~15 years. Protected areas initiated in the 1980s led to a nearly 100 km2 decrease in agriculture from 1984–1987 to 1999–2001, and they became essential refugia for habitat and maintaining ecosystem services.

2019 ◽  
Vol 11 (14) ◽  
pp. 1719 ◽  
Author(s):  
Jiaxin Mi ◽  
Yongjun Yang ◽  
Shaoliang Zhang ◽  
Shi An ◽  
Huping Hou ◽  
...  

Understanding the changes in a land use/land cover (LULC) is important for environmental assessment and land management. However, tracking the dynamic of LULC has proved difficult, especially in large-scale underground mining areas with extensive LULC heterogeneity and a history of multiple disturbances. Additional research related to the methods in this field is still needed. In this study, we tracked the LULC change in the Nanjiao mining area, Shanxi Province, China between 1987 and 2017 via random forest classifier and continuous Landsat imagery, where years of underground mining and reforestation projects have occurred. We applied a Savitzky–Golay filter and a normalized difference vegetation index (NDVI)-based approach to detect the temporal and spatial change, respectively. The accuracy assessment shows that the random forest classifier has a good performance in this heterogeneous area, with an accuracy ranging from 81.92% to 86.6%, which is also higher than that via support vector machine (SVM), neural network (NN), and maximum likelihood (ML) algorithm. LULC classification results reveal that cultivated forest in the mining area increased significantly after 2004, while the spatial extent of natural forest, buildings, and farmland decreased significantly after 2007. The areas where vegetation was significantly reduced were mainly because of the transformation from natural forest and shrubs into grasslands and bare lands, respectively, whereas the areas with an obvious increase in NDVI were mainly because of the conversion from grasslands and buildings into cultivated forest, especially when villages were abandoned after mining subsidence. A partial correlation analysis demonstrated that the extent of LULC change was significantly related to coal production and reforestation, which indicated the effects of underground mining and reforestation projects on LULC changes. This study suggests that continuous Landsat classification via random forest classifier could be effective in monitoring the long-term dynamics of LULC changes, and provide crucial information and data for the understanding of the driving forces of LULC change, environmental impact assessment, and ecological protection planning in large-scale mining areas.


2018 ◽  
Vol 115 (9) ◽  
pp. 2084-2089 ◽  
Author(s):  
Anteneh T. Tesfaw ◽  
Alexander Pfaff ◽  
Rachel E. Golden Kroner ◽  
Siyu Qin ◽  
Rodrigo Medeiros ◽  
...  

Protected areas (PAs) remain the dominant policy to protect biodiversity and ecosystem services but have been shown to have limited impact when development interests force them to locations with lower deforestation pressure. Far less known is that such interests also cause widespread tempering, reduction, or removal of protection [i.e., PA downgrading, downsizing, and degazettement (PADDD)]. We inform responses to PADDD by proposing and testing a bargaining explanation for PADDD risks and deforestation impacts. We examine recent degazettements for hydropower development and rural settlements in the state of Rondônia in the Brazilian Amazon. Results support two hypotheses: (i) ineffective PAs (i.e., those where internal deforestation was similar to nearby rates) were more likely to be degazetted and (ii) degazettement of ineffective PAs caused limited, if any, additional deforestation. We also report on cases in which ineffective portions were upgraded. Overall our results suggest that enhancing PAs’ ecological impacts enhances their legal durability.


Author(s):  
Israel Petros Menbere ◽  

Conversion of natural habitat to other forms of land use is the main threat to protected areas and biodiversity globally. The continued trend of land use land cover change in protected areas resulted in loss of a large portion of biodiversity, overexploitation by humans, transformation of natural land to human settlement, etc. In Ethiopia, the causes for land use land cover change in many protected areas are farmland expansion, deforestation, unsustainable grazing and settlement expansion, and are leading to loss of biodiversity and negative impacts of ecosystem services. In addition, Ethiopia’s protected areas entertain escalating threats and land cover changes due to human population growth, competing claims from the surrounding communities, incompatible investment, lack of environmental law enforcement, absence of complete plan and timely update for protected areas, etc. These have affected protected areas in the country namely the Bale Mountains National Park, Chocke Mountains, Babile Elephant sanctuary, Abijata Shalla Lakes National Park, Awash National Park and others. The continued land use land cover changes are aggravating ecosystem, soil and water resources degradation in mountainous protected areas while they are leading to biodiversity destruction and loss of forest cover in lowland protected areas. In order to halt and reduce the impact of land cover change on biodiversity conservation, undertaking complete land use planning and continuous monitoring of protected areas was found to be important. Similarly, integrating protected areas into the surrounding landscapes and a broader framework of national plans, promoting income generation means for communities surrounding protected areas, promoting biodiversity conservation directly linked to poverty alleviation, involving local communities and stakeholders in land use planning and sustainable management of protected areas, enhancing sound management in vulnerable mountain protected areas and restoring abandoned lands located in and around protected areas are crucial in the proper land use planning and management of protected areas. In addition, enhancing awareness creation and promoting natural resource information of protected areas and enhancing scientific study on land use land cover change pattern of protected areas are vital to undertake effective land use planning and management of protected areas in Ethiopia.


Sign in / Sign up

Export Citation Format

Share Document