land surface phenology
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 60)

H-INDEX

33
(FIVE YEARS 8)

2022 ◽  
Vol 114 ◽  
pp. 103804
Author(s):  
Issam Touhami ◽  
Hassane Moutahir ◽  
Dorsaf Assoul ◽  
Kaouther Bergaoui ◽  
Hamdi Aouinti ◽  
...  

2021 ◽  
Vol 13 (22) ◽  
pp. 4538
Author(s):  
Jiaqi Guo ◽  
Xiaohong Liu ◽  
Wensen Ge ◽  
Xiaofeng Ni ◽  
Wenyuan Ma ◽  
...  

Land surface phenology (LSP), as a precise bio-indicator that responds to climate change, has received much attention in fields concerned with climate change and ecology. Yet, the dynamics of LSP changes in the Qinling Mountains (QMs)—A transition zone between warm-temperate and north subtropical climates with complex vegetation structure—under significant climatic environmental evolution are unclear. Here, we analyzed the spatiotemporal dynamics of LSP for different vegetation types in the QMs from 2001 to 2019 and quantified the degree of influence of meteorological factors (temperature, precipitation, and shortwave radiation), and soil (temperature and moisture), and biological factors (maximum of NDVI and middle date during the growing season) on LSP changes using random forest models. The results show that there is an advanced trend (0.15 days/year) for the start of the growing season (SOS), a delayed trend (0.24 days/year) for the end of the growing season (EOS), and an overall extended trend (0.39 days/year) for the length of the growing season (LOS) in the QMs over the past two decades. Advanced SOS and delayed EOS were the dominant patterns leading to a lengthened vegetation growing season, followed by a joint delay of SOS and EOS, and the latter was particularly common in shrub and evergreen broadleaved forests. The growth season length increased significantly in western QMs. Furthermore, we confirmed that meteorological factors are the main factors affecting the interannual variations in SOS and EOS, especially the meteorological factor of preseason mean shortwave radiation (SWP). The grass and crop are most influenced by SWP. The soil condition has, overall, a minor influence the regional LSP. This study highlighted the specificity of different vegetation growth in the QMs under warming, which should be considered in the accurate prediction of vegetation growth in the future.


2021 ◽  
Vol 13 (21) ◽  
pp. 4465
Author(s):  
Yu Shen ◽  
Xiaoyang Zhang ◽  
Weile Wang ◽  
Ramakrishna Nemani ◽  
Yongchang Ye ◽  
...  

Accurate and timely land surface phenology (LSP) provides essential information for investigating the responses of terrestrial ecosystems to climate changes and quantifying carbon and surface energy cycles on the Earth. LSP has been widely investigated using daily Visible Infrared Imaging Radiometer Suite (VIIRS) or Moderate Resolution Imaging Spectroradiometer (MODIS) observations, but the resultant phenometrics are frequently influenced by surface heterogeneity and persistent cloud contamination in the time series observations. Recently, LSP has been derived from Landsat-8 and Sentinel-2 time series providing detailed spatial pattern, but the results are of high uncertainties because of poor temporal resolution. With the availability of data from Advanced Baseline Imager (ABI) onboard a new generation of geostationary satellites that observe the earth every 10–15 min, daily cloud-free time series could be obtained with high opportunities. Therefore, this study investigates the generation of synthetic high spatiotemporal resolution time series by fusing the harmonized Landsat-8 and Sentinel-2 (HLS) time series with the temporal shape of ABI data for monitoring field-scale (30 m) LSP. The algorithm is verified by detecting the timings of greenup and senescence onsets around north Wisconsin/Michigan states, United States, where cloud cover is frequent during spring rainy season. The LSP detections from HLS-ABI are compared with those from HLS or ABI alone and are further evaluated using PhenoCam observations. The result indicates that (1) ABI could provide ~3 times more high-quality observations than HLS around spring greenup onset; (2) the greenup and senescence onsets derived from ABI and HLS-ABI are spatially consistent and statistically comparable with a median difference less than 1 and 10-days, respectively; (3) greenup and senescence onsets derived from HLS data show sharp boundaries around the orbit-overlapped areas and shifts of ~13 days delay and ~15 days ahead, respectively, relative to HLS-ABI detections; and (4) HLS-ABI greenup and senescence onsets align closely to PhenoCam observations with an absolute average difference of less than 2 days and 5 days, respectively, which are much better than phenology detections from ABI or HLS alone. The result suggests that the proposed approach could be implemented the monitor of 30 m LSP over regions with persistent cloud cover.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shawn D. Taylor ◽  
Dawn M. Browning ◽  
Ruben A. Baca ◽  
Feng Gao

Land surface phenology (LSP) enables global-scale tracking of ecosystem processes, but its utility is limited in drylands due to low vegetation cover and resulting low annual amplitudes of vegetation indices (VIs). Due to the importance of drylands for biodiversity, food security, and the carbon cycle, it is necessary to understand the limitations in measuring dryland dynamics. Here, using simulated data and multitemporal unmanned aerial vehicle (UAV) imagery of a desert shrubland, we explore the feasibility of detecting LSP with respect to fractional vegetation cover, plant functional types, VI uncertainty, and two different detection algorithms. Using simulated data, we found that plants with distinct VI signals, such as deciduous shrubs, can require up to 60% fractional cover to consistently detect LSP. Evergreen plants, with lower seasonal VI amplitude, require considerably higher cover and can have undetectable phenology even with 100% vegetation cover. Our evaluation of two algorithms showed that neither performed the best in all cases. Even with adequate cover, biases in phenological metrics can still exceed 20 days and can never be 100% accurate due to VI uncertainty from shadows, sensor view angle, and atmospheric interference. We showed how high-resolution UAV imagery enables LSP studies in drylands and highlighted important scale effects driven by within-canopy VI variation. With high-resolution imagery, the open canopies of drylands are beneficial as they allow for straightforward identification of individual plants, enabling the tracking of phenology at the individual level. Drylands thus have the potential to become an exemplary environment for future LSP research.


2021 ◽  
Vol 13 (20) ◽  
pp. 4126
Author(s):  
Yang Li ◽  
Ziti Jiao ◽  
Kaiguang Zhao ◽  
Yadong Dong ◽  
Yuyu Zhou ◽  
...  

Vegetation indices are widely used to derive land surface phenology (LSP). However, due to inconsistent illumination geometries, reflectance varies with solar zenith angles (SZA), which in turn affects the vegetation indices, and thus the derived LSP. To examine the SZA effect on LSP, the MODIS bidirectional reflectance distribution function (BRDF) product and a BRDF model were employed to derive LSPs under several constant SZAs (i.e., 0°, 15°, 30°, 45°, and 60°) in the Harvard Forest, Massachusetts, USA. The LSPs derived under varying SZAs from the MODIS nadir BRDF-adjusted reflectance (NBAR) and MODIS vegetation index products were used as baselines. The results show that with increasing SZA, NDVI increases but EVI decreases. The magnitude of SZA-induced NDVI/EVI changes suggests that EVI is more sensitive to varying SZAs than NDVI. NDVI and EVI are comparable in deriving the start of season (SOS), but EVI is more accurate when deriving the end of season (EOS). Specifically, NDVI/EVI-derived SOSs are relatively close to those derived from ground measurements, with an absolute mean difference of 8.01 days for NDVI-derived SOSs and 9.07 days for EVI-derived SOSs over ten years. However, a considerable lag exists for EOSs derived from vegetation indices, especially from the NDVI time series, with an absolute mean difference of 14.67 days relative to that derived from ground measurements. The SOSs derived from NDVI time series are generally earlier, while those from EVI time series are delayed. In contrast, the EOSs derived from NDVI time series are delayed; those derived from the simulated EVI time series under a fixed illumination geometry are also delayed, but those derived from the products with varying illumination geometries (i.e., MODIS NBAR product and MODIS vegetation index product) are advanced. LSPs derived from varying illumination geometries could lead to a difference spanning from a few days to a month in this case study, which highlights the importance of normalizing the illumination geometry when deriving LSP from NDVI/EVI time series.


2021 ◽  
Author(s):  
Lorenzo C. Quesada-Ruiz ◽  
Jose A. Caparros-Santiago ◽  
Miguel A. Garcia-Perez ◽  
Victor Rodriguez-Galiano

2021 ◽  
Author(s):  
Miguel A. Garcia-Perez ◽  
Lorenzo Quesada-Ruiz ◽  
Jose A. Caparros-Santiago ◽  
Esperanza Sánchez-Rodríguez ◽  
Victor Rodriguez-Galiano

Sign in / Sign up

Export Citation Format

Share Document