The Implication of Land Use Land Cover Change on Biodiversity Conservation: An Overview from Protected Areas in Ethiopia

Author(s):  
Israel Petros Menbere ◽  

Conversion of natural habitat to other forms of land use is the main threat to protected areas and biodiversity globally. The continued trend of land use land cover change in protected areas resulted in loss of a large portion of biodiversity, overexploitation by humans, transformation of natural land to human settlement, etc. In Ethiopia, the causes for land use land cover change in many protected areas are farmland expansion, deforestation, unsustainable grazing and settlement expansion, and are leading to loss of biodiversity and negative impacts of ecosystem services. In addition, Ethiopia’s protected areas entertain escalating threats and land cover changes due to human population growth, competing claims from the surrounding communities, incompatible investment, lack of environmental law enforcement, absence of complete plan and timely update for protected areas, etc. These have affected protected areas in the country namely the Bale Mountains National Park, Chocke Mountains, Babile Elephant sanctuary, Abijata Shalla Lakes National Park, Awash National Park and others. The continued land use land cover changes are aggravating ecosystem, soil and water resources degradation in mountainous protected areas while they are leading to biodiversity destruction and loss of forest cover in lowland protected areas. In order to halt and reduce the impact of land cover change on biodiversity conservation, undertaking complete land use planning and continuous monitoring of protected areas was found to be important. Similarly, integrating protected areas into the surrounding landscapes and a broader framework of national plans, promoting income generation means for communities surrounding protected areas, promoting biodiversity conservation directly linked to poverty alleviation, involving local communities and stakeholders in land use planning and sustainable management of protected areas, enhancing sound management in vulnerable mountain protected areas and restoring abandoned lands located in and around protected areas are crucial in the proper land use planning and management of protected areas. In addition, enhancing awareness creation and promoting natural resource information of protected areas and enhancing scientific study on land use land cover change pattern of protected areas are vital to undertake effective land use planning and management of protected areas in Ethiopia.

2020 ◽  
Author(s):  
Gemechu Shale Ogato ◽  
Amare Bantider ◽  
Davide Geneletti

Abstract Background: Land use/land cover change in urban watersheds of developing countries like Ethiopia is claimed to be a consequence of complex interaction of different actors, driving forces, and land itself. It is asserted to result in the degradation of natural vegetation and significant increases in impervious surfaces. The purpose of the study was to analyze spatio-teporal changes in land use/ land cover in Huluka watershed where Ambo town is situated and examine their drivers and effects with environmental implications.Results: The overall increase of urban built-up area, cultivated land, and bare land use/land cover type with 351%, 105%, and 41.9% respectively between the year 1979 and 2017 implies the increase in flooding disaster risk in the watershed as such land use/land cover types exacerbate the run-off conditions in the watershed. Infrastructural expansion, agricultural expansion, increased demand for fuel wood and wood for construction, local environmental factors, local biophysical drivers, and local Social events were identified as proximate drivers of land use/land cover changes in the study area. Demographic factors, economic factors, technological factors, policy and institutional factors and cultural factors were confirmed as the underlying drivers of land use/land cover change in the watershed. Increased flooding risk, increased soil erosion; increased sedimentation into the lake (Dendi lake) and rivers (Huluka, Awaro, Debis, Boji, Bolo, Aleltu, Karkaro, and Korke), decrease in soil fertility resulting from flooding risk, and change in climatic parameters (decrease in annual rainfall and increase in heat during dry season) were claimed as the negative effects of land use/land cover change in the study area.Conclusions: Practice of appropriate land use planning and management in the watershed, appropriate environmental impact assessment (EIA), and proper planning and management of socio-cultural, economic, and environmental development are of paramount importance to promote sustainable development in the watershed.


2021 ◽  
Vol 10 (6) ◽  
pp. 383
Author(s):  
Min Jin ◽  
Ruyi Feng ◽  
Lizhe Wang ◽  
Jining Yan

Simulating and predicting the development and changes in urban land change can provide valuable references for the sustainable development of cities. However, the change process of urban land-use/land-cover is a complex process involving multiple factors and multiple relationships. This dilemma makes it very challenging to accurately simulate the results and to make predictions. In response to this problem, we started with the physical characteristics of the land-use/land-cover change process and constructed a diffusion equation to simulate and predict urban land-use/land-cover changes. The diffusion equation is used to describe the diffusion characteristics of the land-use/land-cover change process, which helps to understand the urban land-use/land-cover change process. The experimental results show that (1) the diffusion equation we constructed can simulate urban land-use/land-cover changes, (2) the simulation process of the model is not limited by the time interval of the time series data itself, and (3) the model only requires one parameter without other constraints.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6617 ◽  
Author(s):  
Jesús A. Prieto-Amparán ◽  
Federico Villarreal-Guerrero ◽  
Martin Martínez-Salvador ◽  
Carlos Manjarrez-Domínguez ◽  
Griselda Vázquez-Quintero ◽  
...  

The loss of temperate forests of Mexico has continued in recent decades despite wide recognition of their importance to maintaining biodiversity. This study analyzes land use/land cover change scenarios, using satellite images from the Landsat sensor. Images corresponded to the years 1990, 2005 and 2017. The scenarios were applied for the temperate forests with the aim of getting a better understanding of the patterns in land use/land cover changes. The Support Vector Machine (SVM) multispectral classification technique served to determine the land use/land cover types, which were validated through the Kappa Index. For the simulation of land use/land cover dynamics, a model developed in Dinamica-EGO was used, which uses stochastic models of Markov Chains, Cellular Automata and Weight of Evidences. For the study, a stationary, an optimistic and a pessimistic scenario were proposed. The projections based on the three scenarios were simulated for the year 2050. Five types of land use/land cover were identified and evaluated. They were primary forest, secondary forest, human settlements, areas without vegetation and water bodies. Results from the land use/land cover change analysis show a substantial gain for the secondary forest. The surface area of the primary forest was reduced from 55.8% in 1990 to 37.7% in 2017. Moreover, the three projected scenarios estimate further losses of the surface are for the primary forest, especially under the stationary and pessimistic scenarios. This highlights the importance and probably urgent implementation of conservation and protection measures to preserve these ecosystems and their services. Based on the accuracy obtained and on the models generated, results from these methodologies can serve as a decision tool to contribute to the sustainable management of the natural resources of a region.


2006 ◽  
Vol 38 (2) ◽  
pp. 238-252 ◽  
Author(s):  
Damion B. Kintz ◽  
Kenneth R. Young ◽  
Kelley A. Crews-Meyer

2016 ◽  
Vol 38 (1) ◽  
pp. 18-35 ◽  
Author(s):  
Kiran Sharma ◽  
Scott M. Robeson ◽  
Pankaj Thapa ◽  
Anup Saikia

2021 ◽  
Author(s):  
Fitsum Temesgen ◽  
Bikila Warkineh ◽  
Alemayehu Hailemicael

AbstractKafta-sheraro national park (KSNP) is one of the homes of the African elephant has experienced extensive destruction of woodland following regular land use & land cover change in the past three decades, however, up to date, data and documentation detailing for these changes are not addressed. This study aims to evaluate the land use land cover change and drivers of change that occurred between 1988 and 2018. Landsat 5(TM), Landsat7 (ETM+), and Landsat 8 (OLI/TIRs) imagery sensors, field observation, and socio-economic survey data were used. The temporal and spatial Normalized difference vegetation index (NDVI) was calculated and tested the correlation between NDVI and precipitation/temperature. The study computed a kappa coefficient of the dry season (0.90) and wet season (0.845). Continuous decline of woodland (29.38%) and riparian vegetation (47.11%) whereas an increasing trend of shrub-bushland (35.28%), grassland (43.47%), bareland (27.52%), and cultivated land (118.36 km2) were showed over thirty years. More results showed bare land was expanded from wet to drier months, while, cultivated land and grazing land increased from dry to wet months. Based on the NDVI result high-moderate vegetation was decreased by 21.47% while sparse & non-vegetation was expanded by 19.8% & 1.7% (36.5 km2) respectively. Settlement & agricultural expansion, human-induced fire, firewood collection, gold mining, and charcoal production were the major proximate drivers that negatively affected the park resources. Around KSNP, the local community livelihood depends on farming, expansion of agricultural land is the main driver for woodland dynamics/depletion and this leads to increase resources competition and challenges for the survival of wildlife. Therefore, urgent sustainable conservation of park biodiversity via encouraging community participation in conservation practices and preparing awareness creation programs should be mandatory.


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Karagama Kolo Geidam ◽  
◽  
Nor Aizam Adnan ◽  
Baba Alhaji Umar ◽  
◽  
...  

Change detection is useful in many applications related to land use and land cover change (LULCC), such as shifting cultivation and landscape changes. Land degradation and desertification. Remote sensing technology has been used for the detection of the changes in land use land cover in Damaturu town Nigeria. The main objectives of this research is to derive the land use/cover change map of Damaturu town from 1986 to 2017 and to quantify land use/ land cover change in the study area. Methodology employed while carry the research includes three satellites images for the year 1986, 1998 and 2017 were downloaded from USGS websites and used for detecting the land cover changes. Ground truth points were collected using google images and used for verification of image classifications. The accuracy of images classification was checked using ground truth point which showed the overall accuracy of 84.6% and a kappa coefficient of 0.89 which indicated that the method of classification was accurate. In the process of the research work, an increased was recorded in the built-up area which rose from 7.2% to 22.0%, open space increased from 10.8 to 22.8%, vegetation from 4.0% to 9.7%, water bodies from 0.0% to 0.1% while agricultural land decreased from 78% to 45.4% due to increase in interest of building as a result of the expansion of the town. The study arrived at the conclusion that there has been a significant land use change due to increase in population and development interest in built up areas which resulted in increased of amount of agricultural land being converted to build up areas over the period of 31 years.


2020 ◽  
Vol 12 (9) ◽  
pp. 1422 ◽  
Author(s):  
Romulus Costache ◽  
Quoc Bao Pham ◽  
Ema Corodescu-Roșca ◽  
Cătălin Cîmpianu ◽  
Haoyuan Hong ◽  
...  

The aim of the present study was to explore the correlation between the land-use/land cover change and the flash-flood potential changes in Zăbala catchment (Romania) between 1989 and 2019. In this regard, the efficiency of GIS, remote sensing and machine learning techniques in detecting spatial patterns of the relationship between the two variables was tested. The paper elaborated upon an answer to the increase in flash flooding frequency across the study area and across the earth due to the occurred land-use/land-cover changes, as well as due to the present climate change, which determined the multiplication of extreme meteorological phenomena. In order to reach the above-mentioned purpose, two land-uses/land-covers (for 1989 and 2019) were obtained using Landsat image processing and were included in a relative evolution indicator (total relative difference-synthetic dynamic land-use index), aggregated at a grid-cell level of 1 km2. The assessment of runoff potential was made with a multilayer perceptron (MLP) neural network, which was trained for 1989 and 2019 with the help of 10 flash-flood predictors, 127 flash-flood locations, and 127 non-flash-flood locations. For the year 1989, the high and very high surface runoff potential covered around 34% of the study area, while for 2019, the same values accounted for approximately 46%. The MLP models performed very well, the area under curve (AUC) values being higher than 0.837. Finally, the land-use/land-cover change indicator, as well as the relative evolution of the flash flood potential index, was included in a geographically weighted regression (GWR). The results of the GWR highlights that high values of the Pearson coefficient (r) occupied around 17.4% of the study area. Therefore, in these areas of the Zăbala river catchment, the land-use/land-cover changes were highly correlated with the changes that occurred in flash-flood potential.


Sign in / Sign up

Export Citation Format

Share Document