scholarly journals Generative Adversarial Learning in YUV Color Space for Thin Cloud Removal on Satellite Imagery

2021 ◽  
Vol 13 (6) ◽  
pp. 1079
Author(s):  
Xue Wen ◽  
Zongxu Pan ◽  
Yuxin Hu ◽  
Jiayin Liu

Clouds are one of the most serious disturbances when using satellite imagery for ground observations. The semi-translucent nature of thin clouds provides the possibility of 2D ground scene reconstruction based on a single satellite image. In this paper, we propose an effective framework for thin cloud removal involving two aspects: a network architecture and a training strategy. For the network architecture, a Wasserstein generative adversarial network (WGAN) in YUV color space called YUV-GAN is proposed. Unlike most existing approaches in RGB color space, our method performs end-to-end thin cloud removal by learning luminance and chroma components independently, which is efficient at reducing the number of unrecoverable bright and dark pixels. To preserve more detailed features, the generator adopts a residual encoding–decoding network without down-sampling and up-sampling layers, which effectively competes with a residual discriminator, encouraging the accuracy of scene identification. For the training strategy, a transfer-learning-based method was applied. Instead of using either simulated or scarce real data to train the deep network, adequate simulated pairs were used to train the YUV-GAN at first. Then, pre-trained convolutional layers were optimized by real pairs to encourage the applicability of the model to real cloudy images. Qualitative and quantitative results on RICE1 and Sentinel-2A datasets confirmed that our YUV-GAN achieved state-of-the-art performance compared with other approaches. Additionally, our method combining the YUV-GAN with a transfer-learning-based training strategy led to better performance in the case of scarce training data.

2019 ◽  
Vol 153 ◽  
pp. 137-150 ◽  
Author(s):  
Wenbo Li ◽  
Ying Li ◽  
Di Chen ◽  
Jonathan Cheung-Wai Chan

2014 ◽  
Vol 618 ◽  
pp. 519-522
Author(s):  
Guang Yu ◽  
Wen Bang Sun ◽  
Gang Liu ◽  
Mai Yu Zhou

Optical remote image is affected by thin cloud inevitably, which debases image definition. Traditional homomorphism filtering frequently used in thin cloud removing has affect on the cloud in low frequency region, but is not effective for those in high frequency region. An improved homomorphism filtering method is proposed on the basis of statistical characters of image information. Instead of the filtering in frequency field, it isolates the low frequency component of the image representing cloud information with calculating neighborhood average in spatial field. Then, the filtered image is enhanced based on rough set. The experiment results show that the proposed method compared to traditional methods can obtain good results and performs faster.


Sign in / Sign up

Export Citation Format

Share Document