scholarly journals Determining the Events in a Glacial Disaster Chain at Badswat Glacier in the Karakoram Range Using Remote Sensing

2021 ◽  
Vol 13 (6) ◽  
pp. 1165
Author(s):  
Donghui Shangguan ◽  
Da Li ◽  
Yongjian Ding ◽  
Jun Liu ◽  
Muhammad Naveed Anjum ◽  
...  

The Karakoram mountain range is prone to natural disasters such as glacial surging and glacial lake outburst flood (GLOF) events. In this study, we aimed to document and reconstruct the sequence of events caused by glacial debris flows that dammed the Immit River in the Hindu Kush Karakoram Range on 17 July 2018. We used satellite remote sensing and field data to conduct the analyses. The order of the events in the disaster chain were determined as follows: glacial meltwater from the G2 glacier (ID: G074052E36491N) transported ice and debris that dammed the meltwater at the snout of the G1 glacier (ID: G074103E36480N), then the debris flow dammed the Immit River and caused Lake Badswat to expand. We surveyed the extent of these events using remote sensing imagery. We analyzed the glaciers’ responses to this event chain and found that the glacial debris flow induced G1 to exhibit accelerating ice flow in parts of the region from 25 July 2018 to 4 August 2018. According to the records from reanalysis data and data from the automatic weather station located 75 km from Lake Badswat, the occurrence of this disaster chain was related to high temperatures recorded after 15 July 2018. The chains of events caused by glacially related disasters makes such hazards more complex and dangerous. Therefore, this study is useful not only for understanding the formation of glacial disaster chains, but also for framing mitigation plans to reduce the risks for vulnerable downstream/upstream residents.

2021 ◽  
Author(s):  
Anand Kumar Pandey ◽  
Kotluri Sravan Kumar ◽  
Virendra Mani Tiwari ◽  
Puranchand Rao ◽  
Kirsten Cook ◽  
...  

<p>The slope instability and associated mass wasting are among the most efficient surface gradation processes in the bedrock terrain that produce dramatic landscape change and associated hazards. The wedge failure in periglacial Higher Himalaya terrain on 7th February in Chamoli, Uttarakhand (India) produced >1.5 km high rock avalanche, which amalgamated with the glacial debris on the frozen river bed produced massive debris flow along the high gradient Rishi Ganga catchment. The high-velocity debris flow and a surge of high flood led to extensive loss of life and infrastructures and issuing the extreme event flood warning along the Alakananda-Ganga river, despite there was no immediate extreme climatic event. The affected region is the locus of extreme mass wasting events associated with Glacial Lake Outburst Flood (GLOF) and Landslide Lake Outburst Flood (LLOF) in the recent past. We analyzed the landscape to understand its control on the 7th February 2021 Rishi Ganga event and briefly discuss other significant events in the adjoining region e.g. 1893/1970 Gohna Tal/Lake LLOF and 2013-Uttarakhand events in Chamoli, which have significance in understanding the surface processes in Higher Himalayan terrain.</p>


2013 ◽  
Vol 12 ◽  
pp. 10-16
Author(s):  
P Yagol ◽  
A Manandhar ◽  
P Ghimire ◽  
RB Kayastha ◽  
JR Joshi

In past Nepal has encountered a number of glacial lake outburst flood (GLOF) events causing loss of billions of rupees. Still there are a number of glacial lakes forming and there are chances of new glacial lake formation. Hence there is intense need to monitor glaciers and glacial lakes. The development on remote sensing technology has eased the researches on glacier and glacial lakes. Identification of locations of potential glacial lakes through the use of remote sensing technology has been proven and hence is opted for identification of locations of potential glacial lake in Khumbu Valley of Sagarmatha Zone, Nepal. The probable sites for glacial lake formation are at Ngojumpa, Lobuche, Khumbu, Bhotekoshi, Inkhu, Kyasar, Lumsumna, etc. As per study, the biggest glacial lake could form at Ngozumpa glacier. Even in other glaciers potential supra-glacial lakes could merge together to form lakes that occupy significant area. Nepalese Journal on Geoinformatics -12, 2070 (2013AD): 10-16


2020 ◽  
Vol 104 (3) ◽  
pp. 2071-2095 ◽  
Author(s):  
Susanne Schmidt ◽  
Marcus Nüsser ◽  
Ravi Baghel ◽  
Juliane Dame

Abstract This article attempts to reconstruct the causes and consequences of the 2014 glacial lake outburst flood (GLOF) event in Gya, Ladakh. We analyse the evolution of the Gya glacial lake using a high temporal and high spatial resolution remote sensing approach. In order to frame the case study in a larger picture, we produce a comprehensive inventory of glacial lakes for the entire Trans-Himalayan region of Ladakh. Changes in the extent and number of glacial lakes have been detected for the years 1969, 1993, 2000/02 and 2018 in order to assess the potential risk of future GLOFs in the region. The remote sensing approach was supported by field surveys between 2014 and 2019. The case study of the Gya GLOF illustrates the problem of potentially hazardous lakes being overlooked in inventories. The broader analysis of the Ladakh region and in-depth analysis of one GLOF lead us to propose an integrated approach for detecting undocumented GLOFs. This article demonstrates the necessity for using multiple methods to ensure robustness of risk assessment. The improved understanding can lead to a more accurate evaluation of exposure to cryosphere hazards and identification of alternative mechanisms and spatial patterns of GLOFs in the Himalaya.


2012 ◽  
Vol 62 (3) ◽  
pp. 887-899 ◽  
Author(s):  
Sanjay K. Jain ◽  
Anil K. Lohani ◽  
R. D. Singh ◽  
Anju Chaudhary ◽  
L. N. Thakural

2021 ◽  
Vol 80 (12) ◽  
Author(s):  
Arshad Ashraf ◽  
Muhammad Bilal Iqbal ◽  
Naveed Mustafa ◽  
Rozina Naz ◽  
Bashir Ahmad

Landslides ◽  
2008 ◽  
Vol 5 (3) ◽  
pp. 271-280 ◽  
Author(s):  
Hedda Breien ◽  
Fabio V. De Blasio ◽  
Anders Elverhøi ◽  
Kaare Høeg

2014 ◽  
Vol 14 (11) ◽  
pp. 3065-3075 ◽  
Author(s):  
J.-J. Liu ◽  
Z.-L. Cheng ◽  
Y. Li

Abstract. The 1988 glacial lake outburst flood (GLOF) in Guangxieco Lake is studied based on geomorphological evidence, interviews with local residents, field surveys in 1990 and 2007, and satellite images from different years. The findings are as follows. (1) The outburst event was caused by two major factors, namely, intense pre-precipitation and persistent high temperatures before the outburst and the low self-stability of the terminal moraine dam as a result of perennial piping. (2) The GLOF, with the peak discharge rate of 1270 m3 s−1, evolved along Midui Valley in the following order: sediment-laden flow, viscous debris flow, non-viscous debris flow, and sediment-laden flood, which was eventually blocked by Palongzangbu River. (3) A comparison between the conditions during the outburst in 1988 and the present conditions suggests a small possibility of a future outburst unless drastic changes occur in landscape and climate. Reconstructing the outburst conditions and the GLOF processes is helpful in assessing a potential outburst in glacier lakes in Tibet.


2013 ◽  
Vol 9 (2) ◽  
Author(s):  
Jaffar Ud Din ◽  
Shoaib Hameed ◽  
Khurshid Ali Shah ◽  
Muhammad Ayub Khan ◽  
Siraj Khan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document