scholarly journals Spatiotemporal Heterogeneity Analysis of Yangtze River Delta Urban Agglomeration: Evidence from Nighttime Light Data (2001–2019)

2021 ◽  
Vol 13 (7) ◽  
pp. 1235
Author(s):  
Min Yu ◽  
Shan Guo ◽  
Yanning Guan ◽  
Danlu Cai ◽  
Chunyan Zhang ◽  
...  

The long-term changes of the relationship between nighttime light and urbanization related built-up areas are explored using nighttime light data obtained from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS, data before 2013) and the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP/VIIRS, data after 2012) and information of the spatiotemporal heterogeneity of urban evolution. This study assimilates two datasets and diagnoses the spatial heterogeneity in administrative city scale based on built-up area tendencies, temporal heterogeneity in pixel scale based on nighttime light intensity tendencies, and GDP associated spatiotemporal variability over the Yangtze River Delta comparing the first two decades of this century (2001–2010 versus 2011–2019). The analysis reveals the following main results: (1) The built-up areas have generally increased in the second period with the center of fast expansion moving southward, including Suzhou-Wuxi-Changzhou, Hangzhou, Ningbo, Nanjing, and Hefei. (2) Urban development in the original city core has saturated and is spilling over to the suburbs and countryside, leading to nighttime light intensity tendency shift from a “rapid to moderate” and a “moderate to rapid” development (a “hot to cold” and a “cold to hot” spatial clustering distribution). (3) The tendency shifts of built-up area and nighttime light intensity occur most frequently in 2010, after which the urban development is transforming from light intensity growth to built-up area growth, particularly in the developed city cores. The urban agglomeration process with nighttime light intensity reaching saturation prior to the urban development spreading into the surrounding suburbs and countryside, appears to be a suitable model, which provides insights in addressing related environmental problems and contribute to regional sustainable urban planning and management.

2019 ◽  
Vol 118 ◽  
pp. 03038
Author(s):  
Shuai Li ◽  
Yan Yang ◽  
Yiting Yu ◽  
Zhao Li ◽  
Linlin Li

As the main form of new urbanization, urban agglomeration regional integration has gradually become an important carrier and platform for leading China’s economic transformation and upgrading. The Yangtze River Delta urban agglomeration is one of the largest urban agglomerations in China, and its integrated and coordinated development is of great significance to China. Taking the Meilong Town of Shanghai as an example, this paper summarizes the impact and role of high-quality urban development under the integration of the Yangtze River Delta. Through the analysis from the perspectives of spatial structure, land use layout, urban renewal, and water grid bureau, the urban development under the integration of the Yangtze River Delta was initially explored.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 495
Author(s):  
Daizhong Tang ◽  
Mengyuan Mao ◽  
Jiangang Shi ◽  
Wenwen Hua

This paper conducts an analytical study on the urban-rural coordinated development (URCD) in the Yangtze River Delta urban agglomeration (YRDUA), and uses data from 2000–2015 of 27 central cities to study the spatial and temporal evolution patterns of URCD and to discover the influencing factors and driving forces behind it through PCA, ESDA and spatial regression models. It reveals that URCD of the YRDUA shows an obvious club convergence phenomenon during the research duration. The regions with high-level URCD gather mainly in the central part of the urban agglomeration, while the remaining regions mostly have low-level URCD, reflecting the regional aggregation phenomenon of spatial divergence. At the same time, we split URCD into efficiency and equity: urban-rural efficient development (URED) also exhibits similar spatiotemporal evolution patterns, but the patterns of urban-rural balanced development (URBD) show some variability. Finally, by analyzing the driving forces in major years during 2000–2015, it can be concluded that: (i) In recent years, influencing factors such as government financial input and consumption no longer play the main driving role. (ii) Influencing factors such as industrialization degree, fixed asset investment and foreign investment even limit URCD in some years. The above results also show that the government should redesign at the system level to give full play to the contributing factors depending on the actual state of development in different regions and promote the coordinated development of urban and rural areas. The results of this study show that the idea of measuring URCD from two dimensions of efficiency and equity is practical and feasible, and the spatial econometric model can reveal the spatial distribution heterogeneity and time evolution characteristics of regional development, which can provide useful insights for urban-rural integration development of other countries and regions.


2018 ◽  
Vol 10 (1) ◽  
pp. 678-687 ◽  
Author(s):  
Deliang Chen ◽  
Yanyan Lu ◽  
Dongzhen Jia

Abstract The Urban Agglomeration in Yangtze River Delta is one of the most important economic and industrial regions in China. The City of Changzhou is one of the most important industrial citys in Yangtze River Delta Urban Agglomeration. Activities here include groundwater exploration. Groundwater overexploitation has contributed to the major land deformation in this city. The severity and magnitude of land deformation over time were investigated in Changzhou City. A Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology, provides a useful tool in measuring urban land deformation. In this study, a time series of COSMO-SkyMed and Sentinel-1A SAR images covering Changzhou City were acquired. SBAS-InSAR imaging technique was used to survey the extent and severity of land deformation associated with the exploitation of groundwater in Changzhou City. Leveling data was used to validate the SBAR-InSAR productions, the error of SBAR-InSAR annual subsidence results was within 2 mm. The results showed that three main land subsidence zones were detected at Xinbei, Tianning and Wujin District. Four subsidence points were selected to analyze the temporal and spatial evolution characteristics of land subsidence. The subsidence rate of P1 to P4 was −2.48 mm/year, −12.78 mm/year, −18.09 mm/year, and −12.69 mm/year respectively. Land subsidence over Changzhou showed a trend of slowing down from 2011 to 2017, especially in Wujin District. SBAR-InSAR derived land deformation that correlates with the water level change in six groundwater stations. Indicated that with groundwater rebound, the land rebound obviously, and the maximum rebound vale reached 9.13 mm.


Sign in / Sign up

Export Citation Format

Share Document