scholarly journals Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data

2021 ◽  
Vol 13 (7) ◽  
pp. 1282
Author(s):  
Parth Naik ◽  
Michele Dalponte ◽  
Lorenzo Bruzzone

Forest aboveground biomass (AGB) is a prime forest parameter that requires global level estimates to study the global carbon cycle. Light detection and ranging (LiDAR) is the state-of-the-art technology for AGB prediction but it is expensive, and its coverage is restricted to small areas. On the contrary, spaceborne Earth observation data are effective and economical information sources to estimate and monitor AGB at a large scale. In this paper, we present a study on the use of different spaceborne multispectral remote sensing data for the prediction of forest AGB. The objective is to evaluate the effects of temporal, spectral, and spatial capacities of multispectral satellite data for AGB prediction. The study was performed on multispectral data acquired by Sentinel-2, RapidEye, and Dove satellites which are characterized by different spatial resolutions, temporal availability, and number of spectral bands. A systematic process of least absolute shrinkage and selection operator (lasso) variable selection generalized linear modeling, leave-one-out cross-validation, and analysis was accomplished on each satellite dataset for AGB prediction. Results point out that the multitemporal data based AGB models were more effective in prediction than the single-time models. In addition, red-edge and short wave infrared (SWIR) channel dependent variables showed significant improvement in the modeling results and contributed to more than 50% of the selected variables. Results also suggest that high spatial resolution plays a smaller role than spectral and temporal information in the prediction of AGB. The overall analysis emphasizes a good potential of spaceborne multispectral data for developing sophisticated methods for AGB prediction especially with specific spectral channels and temporal information.

Author(s):  
M. Papadomanolaki ◽  
M. Vakalopoulou ◽  
S. Zagoruyko ◽  
K. Karantzalos

In this paper we evaluated deep-learning frameworks based on Convolutional Neural Networks for the accurate classification of multispectral remote sensing data. Certain state-of-the-art models have been tested on the publicly available SAT-4 and SAT-6 high resolution satellite multispectral datasets. In particular, the performed benchmark included the <i>AlexNet</i>, <i>AlexNet-small</i> and <i>VGG</i> models which had been trained and applied to both datasets exploiting all the available spectral information. Deep Belief Networks, Autoencoders and other semi-supervised frameworks have been, also, compared. The high level features that were calculated from the tested models managed to classify the different land cover classes with significantly high accuracy rates <i>i.e.</i>, above 99.9%. The experimental results demonstrate the great potentials of advanced deep-learning frameworks for the supervised classification of high resolution multispectral remote sensing data.


2019 ◽  
Vol 11 (6) ◽  
pp. 611 ◽  
Author(s):  
Sergey Abramov ◽  
Mikhail Uss ◽  
Vladimir Lukin ◽  
Benoit Vozel ◽  
Kacem Chehdi ◽  
...  

Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are similar to the image subject to pre-filtering. Here, we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. To provide high efficiency of denoising, reference images have to be transformed using linear or nonlinear transformations. This paper proposes a practical approach to doing this. Examples of denoising tests and real-life images demonstrate high efficiency of the proposed approach.


Author(s):  
M. Papadomanolaki ◽  
M. Vakalopoulou ◽  
S. Zagoruyko ◽  
K. Karantzalos

In this paper we evaluated deep-learning frameworks based on Convolutional Neural Networks for the accurate classification of multispectral remote sensing data. Certain state-of-the-art models have been tested on the publicly available SAT-4 and SAT-6 high resolution satellite multispectral datasets. In particular, the performed benchmark included the <i>AlexNet</i>, <i>AlexNet-small</i> and <i>VGG</i> models which had been trained and applied to both datasets exploiting all the available spectral information. Deep Belief Networks, Autoencoders and other semi-supervised frameworks have been, also, compared. The high level features that were calculated from the tested models managed to classify the different land cover classes with significantly high accuracy rates <i>i.e.</i>, above 99.9%. The experimental results demonstrate the great potentials of advanced deep-learning frameworks for the supervised classification of high resolution multispectral remote sensing data.


2020 ◽  
Vol 5 ◽  
pp. 158-162
Author(s):  
О.V. Grigoreva ◽  
◽  
А.V. Markov ◽  
А.G. Saidov

The article considers a service for providing consumers with various levels of information about forest taxing indicators based on the processing of multispectral data recorded by modern domestic remote sensing spacecraft in the optical spectrum range.


Author(s):  
Sergey Abramov ◽  
Mikhail Uss ◽  
Vladimir Lukin ◽  
Benoit Vozel ◽  
Kacem Chehdi ◽  
...  

Multispectral remote sensing data may contain component images which are heavily corrupted by noise and pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images &ndash; component images having relatively high quality and which are similar to the image subject to pre-filtering. Here we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. Examples of denoising of real-life images demonstrate high efficiency of the proposed approach.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


Sign in / Sign up

Export Citation Format

Share Document