scholarly journals Improving Land Cover Classification Using Genetic Programming for Feature Construction

2021 ◽  
Vol 13 (9) ◽  
pp. 1623
Author(s):  
João E. Batista ◽  
Ana I. R. Cabral ◽  
Maria J. P. Vasconcelos ◽  
Leonardo Vanneschi ◽  
Sara Silva

Genetic programming (GP) is a powerful machine learning (ML) algorithm that can produce readable white-box models. Although successfully used for solving an array of problems in different scientific areas, GP is still not well known in the field of remote sensing. The M3GP algorithm, a variant of the standard GP algorithm, performs feature construction by evolving hyperfeatures from the original ones. In this work, we use the M3GP algorithm on several sets of satellite images over different countries to create hyperfeatures from satellite bands to improve the classification of land cover types. We add the evolved hyperfeatures to the reference datasets and observe a significant improvement of the performance of three state-of-the-art ML algorithms (decision trees, random forests, and XGBoost) on multiclass classifications and no significant effect on the binary classifications. We show that adding the M3GP hyperfeatures to the reference datasets brings better results than adding the well-known spectral indices NDVI, NDWI, and NBR. We also compare the performance of the M3GP hyperfeatures in the binary classification problems with those created by other feature construction methods such as FFX and EFS.

Author(s):  
João Batista ◽  
Ana Cabral ◽  
Maria Vasconcelos ◽  
Leonardo Vanneschi ◽  
Sara Silva

Genetic Programming (GP) is a powerful Machine Learning (ML) algorithm that can produce readable white-box models. Although successfully used for solving an array of problems in different scientific areas, GP is still not well known in Remote Sensing. The M3GP algorithm, a variant of the standard GP algorithm, performs Feature Construction by evolving hyper-features from the original ones. In this work, we use the M3GP algorithm on several sets of satellite images over different countries to create hyper-feature from satellite bands to improve the classification of land cover types. We add the evolved hyper-features to the reference datasets and observe a significant improvement of the performance of three state-of-the-art ML algorithms (Decision Trees, Random Forests and XGBoost) on multiclass classifications and no significant effect on the binary classifications. We show that adding the M3GP hyper-features to the reference datasets brings better results than adding the well-known spectral indices NDVI, NDWI and NBR. We also compare the performance of the M3GP hyper-features in the binary classification problems with those created by other Feature Construction methods like FFX and EFS.


Author(s):  
João E. Batista ◽  
Ana I. R. Cabral ◽  
Maria J. P. Vasconcelos ◽  
Leonardo Vanneschi ◽  
Sara Silva

Genetic Programming (GP) is a powerful Machine Learning (ML) algorithm that can produce readable white-box models. Although successfully used for solving an array of problems in different scientific areas, GP is still not well known in Remote Sensing. The M3GP algorithm, a variant of the standard GP algorithm, performs Feature Construction by evolving hyper-features from the original ones. In this work, we use the M3GP algorithm on several sets of satellite images over different countries to create hyper-feature from satellite bands to improve the classification of land cover types. We add the evolved hyper-features to the reference datasets and observe a significant improvement of the performance of three state-of-the-art ML algorithms (Decision Trees, Random Forests and XGBoost) on multiclass classifications and no significant effect on the binary classifications. We show that adding the M3GP hyper-features to the reference datasets brings better results than adding the well-known spectral indices NDVI, NDWI and NBR. We also compare the performance of the M3GP hyper-features in the binary classification problems with those created by other Feature Construction methods like FFX and EFS.


Author(s):  
João Batista ◽  
Ana Cabral ◽  
Maria Vasconcelos ◽  
Leonardo Vanneschi ◽  
Sara Silva

Genetic Programming (GP) is a powerful Machine Learning (ML) algorithm that can produce readable white-box models. Although successfully used for solving an array of problems in different scientific areas, GP is still not well known in Remote Sensing. The M3GP algorithm, a variant of the standard GP algorithm, performs Feature Construction by evolving hyper-features from the original ones. In this work, we use the M3GP algorithm on several satellite images over different countries to perform binary classification of burnt areas and multiclass classification of land cover types. We add the evolved hyper-features to the reference datasets and observe a significant improvement of the performance of three state-of-the-art ML algorithms (Decision Trees, Random Forests and XGBoost) on the multiclass classification datasets, with no significant effect on the binary classification ones. We show that adding the M3GP hyper-features to the reference datasets brings better results than adding the well-known spectral indices NDVI, NDWI and NBR. We also compare the performance of the M3GP hyper-features in the binary classification problems with those created by other Feature Construction methods like FFX and EFS.


2011 ◽  
Vol 21 (1) ◽  
pp. 19 ◽  
Author(s):  
Catherine Mering ◽  
Franck Chopin

A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2502
Author(s):  
Natalia Vanetik ◽  
Marina Litvak

Definitions are extremely important for efficient learning of new materials. In particular, mathematical definitions are necessary for understanding mathematics-related areas. Automated extraction of definitions could be very useful for automated indexing educational materials, building taxonomies of relevant concepts, and more. For definitions that are contained within a single sentence, this problem can be viewed as a binary classification of sentences into definitions and non-definitions. In this paper, we focus on automatic detection of one-sentence definitions in mathematical and general texts. We experiment with different classification models arranged in an ensemble and applied to a sentence representation containing syntactic and semantic information, to classify sentences. Our ensemble model is applied to the data adjusted with oversampling. Our experiments demonstrate the superiority of our approach over state-of-the-art methods in both general and mathematical domains.


2021 ◽  
Vol 1045 ◽  
pp. 157-178
Author(s):  
Onuchukwu Godwin Chike ◽  
Norhayati Binti Ahmad ◽  
Uday M. Basheer Al-Naib

Material engineers continuously make every effort for the evolution of novel and prevailing production performances to supply our biosphere with resource-proficient, economical, and hygienic substances with superior package operation. The mitigation of energy depletion and gas releases as an utmost significance worldwide is a renowned datum; which also needs the improvement of delicate substances employing budget-proficient and ecologically pleasant methods. Consequently, copious exploration has been aimed in the study of methods retaining a potential to wrestle these widespread essentials. Material engineering processes have advanced as a feasible substitute for conventional steel fragment construction methods. CE has experienced an extraordinary advancement throughout the previous three decades. It was originally utilised uniquely as a state-of-the-art reserve of the paradigm. Referable to the expertise development which permits merging countless engineering procedures for the output of a modified portion that employed intricate configurations, CE expertise has got cumulative responsiveness. As such, this article intends to furnish a comprehensive appraisal of chemical fabrication progressions for steel substance evolution utilised in different applications. The inspection encompasses the current advancement of CE know-hows, a detailed taxonomy and classification of manufacturing operations. The focal point of the upcoming perspective of CE in substance investigation and application is further deliberated


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2398 ◽  
Author(s):  
Bin Xie ◽  
Hankui K. Zhang ◽  
Jie Xue

In classification of satellite images acquired over smallholder agricultural landscape with complex spectral profiles of various crop types, exploring image spatial information is important. The deep convolutional neural network (CNN), originally designed for natural image recognition in the computer vision field, can automatically explore high level spatial information and thus is promising for such tasks. This study tried to evaluate different CNN structures for classification of four smallholder agricultural landscapes in Heilongjiang, China using pan-sharpened 2 m GaoFen-1 (meaning high resolution in Chinese) satellite images. CNN with three pooling strategies: without pooling, with max pooling and with average pooling, were evaluated and compared with random forest. Two different numbers (~70,000 and ~290,000) of CNN learnable parameters were examined for each pooling strategy. The training and testing samples were systematically sampled from reference land cover maps to ensure sample distribution proportional to the reference land cover occurrence and included 60,000–400,000 pixels to ensure effective training. Testing sample classification results in the four study areas showed that the best pooling strategy was the average pooling CNN and that the CNN significantly outperformed random forest (2.4–3.3% higher overall accuracy and 0.05–0.24 higher kappa coefficient). Visual examination of CNN classification maps showed that CNN can discriminate better the spectrally similar crop types by effectively exploring spatial information. CNN was still significantly outperformed random forest using training samples that were evenly distributed among classes. Furthermore, future research to improve CNN performance was discussed.


Sign in / Sign up

Export Citation Format

Share Document