scholarly journals Application and Evaluation of a Deep Learning Architecture to Urban Tree Canopy Mapping

2021 ◽  
Vol 13 (9) ◽  
pp. 1749
Author(s):  
Zhe Wang ◽  
Chao Fan ◽  
Min Xian

Urban forest is a dynamic urban ecosystem that provides critical benefits to urban residents and the environment. Accurate mapping of urban forest plays an important role in greenspace management. In this study, we apply a deep learning model, the U-net, to urban tree canopy mapping using high-resolution aerial photographs. We evaluate the feasibility and effectiveness of the U-net in tree canopy mapping through experiments at four spatial scales—16 cm, 32 cm, 50 cm, and 100 cm. The overall performance of all approaches is validated on the ISPRS Vaihingen 2D Semantic Labeling dataset using four quantitative metrics, Dice, Intersection over Union, Overall Accuracy, and Kappa Coefficient. Two evaluations are performed to assess the model performance. Experimental results show that the U-net with the 32-cm input images perform the best with an overall accuracy of 0.9914 and an Intersection over Union of 0.9638. The U-net achieves the state-of-the-art overall performance in comparison with object-based image analysis approach and other deep learning frameworks. The outstanding performance of the U-net indicates a possibility of applying it to urban tree segmentation at a wide range of spatial scales. The U-net accurately recognizes and delineates tree canopy for different land cover features and has great potential to be adopted as an effective tool for high-resolution land cover mapping.

Author(s):  
Z. Uçar ◽  
R. Eker ◽  
A. Aydin

Abstract. Urban trees and forests are essential components of the urban environment. They can provide numerous ecosystem services and goods, including but not limited to recreational opportunities and aesthetic values, removal of air pollutants, improving air and water quality, providing shade and cooling effect, reducing energy use, and storage of atmospheric CO2. However, urban trees and forests have been in danger of being lost by dense housing resulting from population growth in the cities since the 1950s, leading to increased local temperature, pollution level, and flooding risk. Thus, determining the status of urban trees and forests is necessary for comprehensive understanding and quantifying the ecosystem services and goods. Tree canopy cover is a relatively quick, easy to obtain, and cost-effective urban forestry metric broadly used to estimate ecosystem services and goods of the urban forest. This study aimed to determine urban forest canopy cover areas and monitor the changes between 1984–2015 for the Great Plain Conservation area (GPCA) that has been declared as a conservation Area (GPCA) in 2017, located on the border of Düzce City (Western Black Sea Region of Turkey). Although GPCA is a conservation area for agricultural purposes, it consists of the city center with 250,000 population and most settlement areas. A random point sampling approach, the most common sampling approach, was applied to estimate urban tree canopy cover and their changes over time from historical aerial imageries. Tree canopy cover ranged from 16.0% to 27.4% within the study period. The changes in urban canopy cover between 1984–1999 and 1999–2015 were statistically significant, while there was no statistical difference compared to the changes in tree canopy cover between 1984–2015. The result of the study suggested that an accurate estimate of urban tree canopy cover and monitoring long-term canopy cover changes are essential to determine the current situation and the trends for the future. It will help city planners and policymakers in decision-making processes for the future of urban areas.


Optik ◽  
2015 ◽  
Vol 126 (13) ◽  
pp. 1269-1276 ◽  
Author(s):  
Jian-Nong Cao ◽  
Zhenfeng Shao ◽  
Jia Guo ◽  
Bei Wang ◽  
Yuwei Dong ◽  
...  

Author(s):  
Andrew Koeser

Urban Tree Canopy (UTC) greatly enhances the livability of cities by reducing urban heat buildup, mitigating stormwater runoff, and filtering airborne particulates, among other ecological services. These benefits, combined with the relative ease of measuring tree cover from aerial imagery, have led many cities to adopt management strategies based on UTC goals. In this study, we conducted canopy analyses for the 300 largest cities in Florida to assess the impacts of development practices, urban forest ordinances, and hurricanes on tree cover. Within the cities sampled, UTC canopy ranged from 5.9% to 68.7% with a median canopy coverage of 32.3% Our results indicate that the peak gust speeds recorded during past hurricanes events were a significant predictor of canopy coverage (P-value = <0.001) across the sampled cities. As peak gust speeds increased from 152 km/h (i.e., a lower-intensity Category 1 storm) to 225 km/h (lower-intensity Category 4 and the maximum gusts captured in our data), predicted canopy in developed urban areas decreased by 7.7%. Beyond the impacts of hurricanes and tropical storms, we found that historic landcover and two out of eight urban forest ordinances were significant predictors of existing canopy coverage (P-landcover <0.001; P-tree preservation ordinance = 0.02, P-heritage tree ordinance = 0.03). Results indicate that local policies and tree protections can protect or enhance urban tree canopy, even in the face of rapid development and periodic natural disturbances.


2013 ◽  
Vol 39 (2) ◽  
Author(s):  
Kristen King ◽  
Dexter Locke

Measurements of urban tree canopy cover are crucial for managing urban forests and required for the quantification of the benefits provided by trees. These types of data are increasingly used to secure funding and justify large-scale planting programs in urban areas. Comparisons of tree canopy measurement methods have been conducted before, but a rapidly evolving set of new technologies and applications may leave urban foresters wondering, “Which method is most appropriate for my circumstances?” This analysis compares two well-established measures of local tree canopy and building cover with a third, relatively untested technique. Field-based visual estimations (using the USDA Forest Service’s i-Tree protocols), summaries of highresolution land cover data using geographic information systems (GIS), and an analysis of skyward-oriented hemispherical photographs at 215 roadside sites across the five diverse counties of New York City, New York, U.S., are the methods evaluated herein. The study authors found no statistically significant differences between the methods when comparing tree canopy; however, the hemispherical camera had a tendency to overestimate building coverage. It is concluded that hemispheric photo techniques are understudied in urban areas, and that the i-Tree and GIS-based approaches are complementary and reinforcing tools indispensable for both the urban forest management and research communities.


2013 ◽  
Vol 12 (2) ◽  
pp. 191-199 ◽  
Author(s):  
Sarah K. Mincey ◽  
Mikaela Schmitt-Harsh ◽  
Richard Thurau

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 403
Author(s):  
Lara A. Roman ◽  
Indigo J. Catton ◽  
Eric J. Greenfield ◽  
Hamil Pearsall ◽  
Theodore S. Eisenman ◽  
...  

Municipal leaders are pursuing ambitious goals to increase urban tree canopy (UTC), but there is little understanding of the pace and socioecological drivers of UTC change. We analyzed land cover change in Philadelphia, Pennsylvania (United States) from 1970–2010 to examine the impacts of post-industrial processes on UTC. We interpreted land cover classes using aerial imagery and assessed historical context using archival newspapers, agency reports, and local historical scholarship. There was a citywide UTC increase of +4.3 percentage points. Substantial UTC gains occurred in protected open spaces related to both purposeful planting and unintentional forest emergence due to lack of maintenance, with the latter phenomenon well-documented in other cities located in forested biomes. Compared to developed lands, UTC was more persistent in protected open spaces. Some neighborhoods experienced substantial UTC gains, including quasi-suburban areas and depopulated low-income communities; the latter also experienced decreasing building cover. We identified key processes that drove UTC increases, and which imposed legacies on current UTC patterns: urban renewal, urban greening initiatives, quasi-suburban developments, and (dis)investments in parks. Our study demonstrates the socioecological dynamism of intra-city land cover changes at multi-decadal time scales and the crucial role of local historical context in the interpretation of UTC change.


Author(s):  
J. Morgan Grove ◽  
Mary L. Cadenasso ◽  
Steward T. A. Pickett ◽  
Gary E. Machlis ◽  
William R. Burch

Sign in / Sign up

Export Citation Format

Share Document