scholarly journals Combining Satellite InSAR, Slope Units and Finite Element Modeling for Stability Analysis in Mining Waste Disposal Areas

2021 ◽  
Vol 13 (10) ◽  
pp. 2008
Author(s):  
Juan López-Vinielles ◽  
José A. Fernández-Merodo ◽  
Pablo Ezquerro ◽  
Juan C. García-Davalillo ◽  
Roberto Sarro ◽  
...  

Slope failures pose a substantial threat to mining activity due to their destructive potential and high probability of occurrence on steep slopes close to limit equilibrium conditions, which are often found both in open pits and in waste and tailing disposal facilities. The development of slope monitoring and modeling programs usually entails the exploitation of in situ and remote sensing data, together with the application of numerical modeling, and it plays an important role in the definition of prevention and mitigation measures aimed at minimizing the impact of slope failures in mining areas. In this paper, a new methodology is presented; one that combines satellite radar interferometry and 2D finite element modeling for slope stability analysis at a regional scale, and applied within slope unit polygons. Although the literature includes many studies applying radar interferometry and modeling for slope stability analysis, the addition of slope units as input data for radar interferometry and modeling purposes has, to our knowledge, not previously been reported. A former mining area in southeast Spain was studied, and the method proved useful for detecting and characterizing a large number of unstable slopes. Out of the 1959 slope units used for the spatial analysis of the radar interferometry data, 43 were unstable, with varying values of safety factor and landslide size. Out of the 43 active slope units, 21 exhibited line of sight velocities greater than the maximum error obtained through validation analysis (2.5 cm/year). Finally, this work discusses the possibility of using the results of the proposed approach to devise a proxy for landslide hazard. The proposed methodology can help to provide non-expert final users with intelligible, clear, and easily comparable information to analyze slope instabilities in different settings, and not limited to mining areas.

Author(s):  
Juan López-Vinielles ◽  
José A. Fernández-Merodo ◽  
Pablo Ezquerro ◽  
Juan C. García-Davalillo ◽  
Roberto Sarro ◽  
...  

Slope failures pose a substantial threat to mining activity due to their destructive potential and high probability of occurrence on steep slopes close to limit equilibrium conditions, often found both in open pits and in waste and tailing disposal facilities. The development of slope monitoring and modeling programs usually entails the exploitation of in situ and remote sensing data together with the application of numerical modeling, and it plays an important role in the definition of prevention and mitigation measures aimed at minimizing the impact of slope failures in mining areas. Here we present a new methodology combining satellite radar interferometry and 2D finite element modeling for slope stability analysis at a regional scale, applied within slope unit polygons. We studied a former mining area in southeast Spain, and the method proved useful in detecting and characterizing a considerably large number of unstable slopes. Out of 1,959 slope units used for the spatial analysis of the radar interferometry data, 43 were unstable, with varying values of safety factor and landslide size. Out of the 43 active slope units, 21 exhibited line of sight velocities greater than the maximum error obtained through the validation analysis (2.5 cm/year). Eventually, this work discusses the possibility of using the results of the proposed approach to devise a proxy for landslide hazard. The proposed methodology can help to provide non-expert final users with intelligible, clear and easily comparable information to analyze slope instabilities in different settings, not limited to mining areas.


2018 ◽  
Vol 9 (4) ◽  
pp. 504-524 ◽  
Author(s):  
Gaurav Nilakantan

This work presents the first fully validated and predictive finite element modeling framework to generate the probabilistic penetration response of an aramid woven fabric subjected to ballistic impact. This response is defined by a V0-V100 curve that describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this article comprises a single-layer, fully clamped, plain-weave Kevlar fabric impacted at the center by a 0.22 cal spherical steel projectile. The fabric finite element model comprises individually modeled three-dimensional warp and fill yarns and is validated against the experimental material microstructure. Sources of statistical variability including yarn strength and modulus, inter-yarn friction, and precise projectile impact location are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, each comprising unique mappings. The impact velocities and outcomes (penetration, non-penetration) are used to generate the numerical V0-V100 curve which is then validated against the experimental V0-V100 curve obtained from ballistic impact testing and shown to be in excellent agreement. The experimental data and its statistical analysis used for model input and validation, namely, the Kevlar yarn tensile strengths and moduli, inter-yarn friction, and fabric ballistic impact testing, are also reported.


Author(s):  
M Sungkar ◽  
M Munirwansyah ◽  
R P Munirwan ◽  
D Safrina

Sign in / Sign up

Export Citation Format

Share Document