scholarly journals Robust Clutter Suppression and Ground Moving Target Imaging Method for a Multichannel SAR with High-Squint Angle Mounted on Hypersonic Vehicle

2021 ◽  
Vol 13 (11) ◽  
pp. 2051
Author(s):  
Jiusheng Han ◽  
Yunhe Cao ◽  
Tat-Soon Yeo ◽  
Fengfei Wang

This paper investigates a robust clutter suppression and detection of ground moving target (GMT) imaging method for a multichannel synthetic aperture radar (MC-SAR) with high-squint angle mounted on hypersonic vehicle (HSV). A modified coarse-focused method with cubic chirp Fourier transform (CFT) is explored first that permits the coarsely focused imageries to be recovered, thus alleviated the impacts of GMT Doppler ambiguity and range cell migration (RCM). After that, in combination with joint-pixel model, a robust clutter suppression method which enhances the GMT integration, and improving the accuracy of radial speed (RS) recovery by modifying the matching between the beamformer center and GMT, is proposed. Due to that the first-order phase compensation and RS retrieval are predigested, the proposed algorithm has lower the algorithmic complexity. Finally, the feasibility of our proposed method are verified via experimental results based on simulated and real measured data.

2020 ◽  
Vol 12 (20) ◽  
pp. 3356
Author(s):  
Zhen-Yu He ◽  
Yang Yang ◽  
Wu Chen ◽  
Duo-Jie Weng

Current studies of global navigation satellite systems (GNSS)-based bistatic synthetic aperture radar (GNSS-SAR) is focused on static objects on land. However, moving target imaging is also very significant for modern SAR systems. Imaging a moving target has two main problems. One is the unknown range cell migration; the other is the motion parameter estimation, such as the target’s velocity. This paper proposes a moving target imaging formation algorithm for GNSS-SAR. First, an approximate bistatic range history is derived to describe the phase variation of the target signal along the azimuth time. Then, a keystone transform is employed to correct the range cell migration. To address the motion parameter estimation, a chirp rate estimation method based on short-time Fourier transform and random sample consensus is proposed with high processing efficiency and robust estimation errors in low signal-to-noise ratio scenes. The estimated chirp rate can calculate the target’s velocity. Finally, azimuth compression derivation is performed to accomplish GNSS-SAR imaging. A maritime experimental campaign is conducted to validate the effectiveness of the proposed algorithm. The two cargo ships in the SAR images have good accordance with the ground truth in terms of the target-to-receiver vertical distances along the range and the ships’ length along the cross-range.


Sensors ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 216 ◽  
Author(s):  
Zhongyu Li ◽  
Junjie Wu ◽  
Yulin Huang ◽  
Haiguang Yang ◽  
Jianyu Yang

Sign in / Sign up

Export Citation Format

Share Document