scholarly journals Algorithm for Real-Time Cycle Slip Detection and Repair for Low Elevation GPS Undifferenced Data in Different Environments

2021 ◽  
Vol 13 (11) ◽  
pp. 2078
Author(s):  
Ning Liu ◽  
Qin Zhang ◽  
Shuangcheng Zhang ◽  
Xiaoli Wu

Real-time cycle slip detection and repair is one of the key issues in global positioning system (GPS) high precision data processing and application. In particular, when GPS stations are in special environments, such as strong ionospheric disturbance, sea, and high-voltage transmission line interference, cycle slip detection and repair in low elevation GPS observation data are more complicated than those in normal environments. For low elevation GPS undifferenced carrier phase data in different environments, a combined cycle slip detection algorithm is proposed. This method uses the first-order Gauss–Markov stochastic process to model the pseudorange multipath in the wide-lane phase minus narrow-lane pseudorange observation equation, and establishes the state equation of the wide-lane ambiguity with the pseudorange multipath as a parameter, and it uses the Kalman filter for real-time estimation and detects cycle slips based on statistical hypothesis testing with a predicted residual sequence. Meanwhile, considering there are certain correlations among low elevation, observation epoch interval, and ionospheric delay error, a second-order difference geometry-free combination cycle slip test is constructed that takes into account the elevation. By combining the two methods, real-time cycle slip detection for GPS low elevation satellite undifferenced data is achieved. A cycle slip repair method based on spatial search and objective function minimization criterion is further proposed to determine the correct solution of the cycle slips after they are detected. The whole algorithm is experimentally verified using the static and kinematic measured data of low elevation satellites under four different environments: normal condition, high-voltage transmission lines, dynamic condition in the sea, and ionospheric disturbances. The experimental results show that the algorithm can detect and repair cycle slips accurately for low elevation GPS undifferenced data, the difference between the float solution and the true value for the cycle slip does not exceed 0.5 cycle, and the differences obey the normal distribution overall. At the same time, the wide-lane ambiguity and second-order difference GF combination sequence calculated by the algorithm is smoother, which give further evidence that the algorithm for cycle slip detection and repair is feasible and effective, and has the advantage of being immune to the special observation environments.

Survey Review ◽  
2016 ◽  
Vol 48 (350) ◽  
pp. 367-375 ◽  
Author(s):  
Y.-F. Yao ◽  
J.-X. Gao ◽  
J. Wang ◽  
H. Hu ◽  
Z.-K. Li

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Haijun Yuan ◽  
Zhetao Zhang ◽  
Xiufeng He ◽  
Tianyang Xu ◽  
Xueyong Xu ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 427 ◽  
Author(s):  
Wanke Liu ◽  
Xueyuan Jin ◽  
Mingkui Wu ◽  
Jie Hu ◽  
Yun Wu

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5756
Author(s):  
Xiaofei Xu ◽  
Zhixi Nie ◽  
Zhenjie Wang ◽  
Yuanfan Zhang

Recently, some smartphone manufacturers have subsequently released dual-frequency GNSS smartphones. With dual-frequency observations, the positioning performance is expected to be significantly improved. Cycle-slip detection and correction play an important role in high-precision GNSS positioning, such as precise point positioning (PPP) and real-time kinematic (RTK) positioning. The TurboEdit method utilizes Melbourne–Wübbena (MW) and phase ionospheric residual (PIR) combinations to detect cycle-slips, and it is widely used in the data processing applications for geodetic GNSS receivers. The smartphone pseudorange observations are proved to be much noisier than those collected with geodetic GNSS receivers. Due to the poor pseudorange observation, the MW combination would be difficult to detect small cycle-slips. In addition, some specific cycle-slip combinations, where the ratio of cycle-slip values at different carrier frequencies is close to the frequency ratio, are also difficult to be detected by PIR combination. As a consequence, the traditional TurboEdit method may fail to detect specific small cycle-slip combinations. In this contribution, we develop a modified TurboEdit cycle-slip detection and correction method for dual-frequency smartphone GNSS observations. At first, MW and PIR combinations are adopted to detect cycle-slips by comparing these two combinations with moving-window average values. Then, the epoch-differenced wide-lane combinations are used to estimate the changes of smartphone position and clock bias, and the cycle-slip is identified by checking the largest normalized residual whether it exceeds a predefined threshold value. The process of estimation and cycle-slip identification is implemented in an iterative way until there is no over-limit residual or there is no redundant measurement. At last, the cycle-slip values at each frequency are estimated with the epoch-differenced wide-lane and ionosphere-free combinations, and the least-square ambiguity decorrelation adjustment (LAMBDA) method is adopted to further obtain an integer solution. The proposed method has been verified with 1 Hz dual-frequency smartphone GNSS data. The results show that the modified TurboEdit method can effectively detect and correct even for specific small cycle-slip combinations, e.g., (4, 3), which is difficult to be detected with the traditional TurboEdit method.


Sign in / Sign up

Export Citation Format

Share Document