scholarly journals Feature Selection and Mislabeled Waveform Correction for Water–Land Discrimination Using Airborne Infrared Laser

2021 ◽  
Vol 13 (18) ◽  
pp. 3628
Author(s):  
Gang Liang ◽  
Xinglei Zhao ◽  
Jianhu Zhao ◽  
Fengnian Zhou

The discrimination of water–land waveforms is a critical step in the processing of airborne topobathy LiDAR data. Waveform features, such as the amplitudes of the infrared (IR) laser waveforms of airborne LiDAR, have been used in identifying water–land interfaces in coastal waters through waveform clustering. However, water–land discrimination using other IR waveform features, such as full width at half maximum, area, width, and combinations of different features, has not been evaluated and compared with other methods. Furthermore, false alarms often occur when water–land discrimination in coastal areas is conducted using IR laser waveforms because of environmental factors. This study provides an optimal feature for water–land discrimination using an IR laser by comparing the performance of different waveform features and proposes a dual-clustering method integrating K-means and density-based spatial clustering applications with noise algorithms to improve the accuracy of water–land discrimination through the clustering of waveform features and positions of IR laser spot centers. The proposed method is used for practical measurement with Optech Coastal Zone Mapping and Imaging LiDAR. Results show that waveform amplitude is the optimal feature for water–land discrimination using IR laser waveforms among the researched features. The proposed dual-clustering method can correct mislabeled water or land waveforms and reduce the number of mislabeled waveforms by 48% with respect to the number obtained through traditional K-means clustering. Water–land discrimination using IR waveform amplitude and the proposed dual-clustering method can reach an overall accuracy of 99.730%. The amplitudes of IR laser waveform and the proposed dual-clustering method are recommended for water–land discrimination in coastal and inland waters because of the high accuracy, resolution, and automation of the methods.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


2021 ◽  
Author(s):  
Renato César dos Santos ◽  
Mauricio Galo ◽  
André Caceres Carrilho ◽  
Guilherme Gomes Pessoa

2021 ◽  
Vol 13 (4) ◽  
pp. 559
Author(s):  
Milto Miltiadou ◽  
Neill D. F. Campbell ◽  
Darren Cosker ◽  
Michael G. Grant

In this paper, we investigate the performance of six data structures for managing voxelised full-waveform airborne LiDAR data during 3D polygonal model creation. While full-waveform LiDAR data has been available for over a decade, extraction of peak points is the most widely used approach of interpreting them. The increased information stored within the waveform data makes interpretation and handling difficult. It is, therefore, important to research which data structures are more appropriate for storing and interpreting the data. In this paper, we investigate the performance of six data structures while voxelising and interpreting full-waveform LiDAR data for 3D polygonal model creation. The data structures are tested in terms of time efficiency and memory consumption during run-time and are the following: (1) 1D-Array that guarantees coherent memory allocation, (2) Voxel Hashing, which uses a hash table for storing the intensity values (3) Octree (4) Integral Volumes that allows finding the sum of any cuboid area in constant time, (5) Octree Max/Min, which is an upgraded octree and (6) Integral Octree, which is proposed here and it is an attempt to combine the benefits of octrees and Integral Volumes. In this paper, it is shown that Integral Volumes is the more time efficient data structure but it requires the most memory allocation. Furthermore, 1D-Array and Integral Volumes require the allocation of coherent space in memory including the empty voxels, while Voxel Hashing and the octree related data structures do not require to allocate memory for empty voxels. These data structures, therefore, and as shown in the test conducted, allocate less memory. To sum up, there is a need to investigate how the LiDAR data are stored in memory. Each tested data structure has different benefits and downsides; therefore, each application should be examined individually.


2021 ◽  
Vol 10 (3) ◽  
pp. 161
Author(s):  
Hao-xuan Chen ◽  
Fei Tao ◽  
Pei-long Ma ◽  
Li-na Gao ◽  
Tong Zhou

Spatial analysis is an important means of mining floating car trajectory information, and clustering method and density analysis are common methods among them. The choice of the clustering method affects the accuracy and time efficiency of the analysis results. Therefore, clarifying the principles and characteristics of each method is the primary prerequisite for problem solving. Taking four representative spatial analysis methods—KMeans, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Clustering by Fast Search and Find of Density Peaks (CFSFDP), and Kernel Density Estimation (KDE)—as examples, combined with the hotspot spatiotemporal mining problem of taxi trajectory, through quantitative analysis and experimental verification, it is found that DBSCAN and KDE algorithms have strong hotspot discovery capabilities, but the heat regions’ shape of DBSCAN is found to be relatively more robust. DBSCAN and CFSFDP can achieve high spatial accuracy in calculating the entrance and exit position of a Point of Interest (POI). KDE and DBSCAN are more suitable for the classification of heat index. When the dataset scale is similar, KMeans has the highest operating efficiency, while CFSFDP and KDE are inferior. This paper resolves to a certain extent the lack of scientific basis for selecting spatial analysis methods in current research. The conclusions drawn in this paper can provide technical support and act as a reference for the selection of methods to solve the taxi trajectory mining problem.


2017 ◽  
Vol 9 (8) ◽  
pp. 771 ◽  
Author(s):  
Yanjun Wang ◽  
Qi Chen ◽  
Lin Liu ◽  
Dunyong Zheng ◽  
Chaokui Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document