scholarly journals PS-InSAR-Based Validated Landslide Susceptibility Mapping along Karakorum Highway, Pakistan

2021 ◽  
Vol 13 (20) ◽  
pp. 4129
Author(s):  
Muhammad Afaq Hussain ◽  
Zhanlong Chen ◽  
Run Wang ◽  
Muhammad Shoaib

Landslide classification and identification along Karakorum Highway (KKH) is still challenging due to constraints of proposed approaches, harsh environment, detail analysis, complicated natural landslide process due to tectonic activities, and data availability problems. A comprehensive landslide inventory and a landslide susceptibility mapping (LSM) along the Karakorum Highway were created in recent research. The extreme gradient boosting (XGBoost) and random forest (RF) models were used to compare and forecast the association between causative parameters and landslides. These advanced machine learning (ML) models can measure environmental issues and risks for any area on a regional scale. Initially, 74 landslide locations were determined along the KKH to prepare the landslide inventory map using different data. The landslides were randomly divided into two sets for training and validation at a proportion of 7/3. Fifteen landslide conditioning variables were produced for susceptibility mapping. The interferometric synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technique investigated the deformation movement of extracted models in the susceptible zones. It revealed a high line of sight (LOS) deformation velocity in both models’ sensitive zones. For accuracy comparison, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve approach was used, which showed 93.44% and 92.22% accuracy for XGBoost and RF, respectively. The XGBoost method produced superior results, combined with PS-InSAR results to create a new LSM for the area. This improved susceptibility model will aid in mitigating the landslide disaster, and the results may assist in the safe operation of the highway in the research area.

2021 ◽  
Vol 9 ◽  
Author(s):  
Shibao Wang ◽  
Jianqi Zhuang ◽  
Jia Zheng ◽  
Hongyu Fan ◽  
Jiaxu Kong ◽  
...  

Landslides are widely distributed worldwide and often result in tremendous casualties and economic losses, especially in the Loess Plateau of China. Taking Wuqi County in the hinterland of the Loess Plateau as the research area, using Bayesian hyperparameters to optimize random forest and extreme gradient boosting decision trees model for landslide susceptibility mapping, and the two optimized models are compared. In addition, 14 landslide influencing factors are selected, and 734 landslides are obtained according to field investigation and reports from literals. The landslides were randomly divided into training data (70%) and validation data (30%). The hyperparameters of the random forest and extreme gradient boosting decision tree models were optimized using a Bayesian algorithm, and then the optimal hyperparameters are selected for landslide susceptibility mapping. Both models were evaluated and compared using the receiver operating characteristic curve and confusion matrix. The results show that the AUC validation data of the Bayesian optimized random forest and extreme gradient boosting decision tree model are 0.88 and 0.86, respectively, which showed an improvement of 4 and 3%, indicating that the prediction performance of the two models has been improved. However, the random forest model has a higher predictive ability than the extreme gradient boosting decision tree model. Thus, hyperparameter optimization is of great significance in the improvement of the prediction accuracy of the model. Therefore, the optimized model can generate a high-quality landslide susceptibility map.


2020 ◽  
Vol 9 (10) ◽  
pp. 569
Author(s):  
Ananta Man Singh Pradhan ◽  
Yun-Tae Kim

Landslides impact on human activities and socio-economic development, especially in mountainous areas. This study focuses on the comparison of the prediction capability of advanced machine learning techniques for the rainfall-induced shallow landslide susceptibility of Deokjeokri catchment and Karisanri catchment in South Korea. The influencing factors for landslides, i.e., topographic, hydrologic, soil, forest, and geologic factors, are prepared from various sources based on availability, and a multicollinearity test is also performed to select relevant causative factors. The landslide inventory maps of both catchments are obtained from historical information, aerial photographs and performed field surveys. In this study, Deokjeokri catchment is considered as a training area and Karisanri catchment as a testing area. The landslide inventories contain 748 landslide points in training and 219 points in testing areas. Three landslide susceptibility maps using machine learning models, i.e., Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Deep Neural Network (DNN), are prepared and compared. The outcomes of the analyses are validated using the landslide inventory data. A receiver operating characteristic curve (ROC) method is used to verify the results of the models. The results of this study show that the training accuracy of RF is 0.756 and the testing accuracy is 0.703. Similarly, the training accuracy of XGBoost is 0.757 and testing accuracy is 0.74. The prediction of DNN revealed acceptable agreement between the susceptibility map and the existing landslides, with a training accuracy of 0.855 and testing accuracy of 0.802. The results showed that the DNN model achieved lower prediction error and higher accuracy results than other models for shallow landslide modeling in the study area.


Author(s):  
Ananta Man Singh Pradhan ◽  
Yun-Tae Kim

Landslides impact on human activities and socio-economic development especially in mountainous areas. This study focuses on the comparison of the prediction capability of advanced machine learning techniques for rainfall-induced shallow landslide susceptibility of Deokjeokri catchment and Karisanri catchment in South Korea. The influencing factors for landslides i.e. topographic, hydrologic, soil, forest, and geologic factors are prepared from various sources based on availability and a multicollinearity test is also performed to select relevant causative factors. The landslide inventory maps of both catchments are obtained from historical information, aerial photographs and performing field survey. In this study, Deokjeokri catchment is considered as a training area and Karisanri catchment as a testing area. The landslide inventories content 748 landslide points in training and 219 points in testing areas. Three landslide susceptibility maps using machine learning models i.e. Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Deep Neural Network (DNN) are prepared and compared. The outcomes of the analyses are validated using the landslide inventory data. A receiver operating characteristic curve (ROC) method is used to verify the results of the models. The results of this study show that the training accuracy of RF is 0.757 and the testing accuracy is 0.74. Similarly, training accuracy of XGBoost is 0.756 and testing accuracy is 0.703. The prediction of DNN revealed acceptable agreement between susceptibility map and the existing landslides with training and testing accuracy of 0.855 and 0.802, respectively. The results showed that, the DNN model achieved lower prediction error and higher accuracy results than other models for shallow landslide modeling in the study area


2020 ◽  
Author(s):  
Sandip Som ◽  
Saibal Ghosh ◽  
Soumitra Dasgupta ◽  
Thrideep Kumar ◽  
J. N. Hindayar ◽  
...  

Abstract Modeling landslide susceptibility is one of the important aspects of land use planning and risk management. Several modeling methods are available based either on highly specialized knowledge on causative attributes or on good landslide inventory data to use as training and testing attribute on model development. Understandably, these two criteria are rarely available for local land regulators. This paper presents a new model methodology, which requires minimum knowledge of causative attributes and does not depend on landslide inventory. As landslide causes due to the combined effect of causative attributes, this model utilizes communality (common variance) of the attributes, extracted by exploratory factor analysis and used for calculation of landslide susceptibility index. The model can understand the inter-relationship of different geo-environmental attributes responsible for landslide along with identification and prioritization of attributes on model performance to delineate non-performing attributes. Finally, the model performance is compared with the well established AHP method (knowledge driven) and FRM method (data driven) by cut-off independent ROC curves along with cost-effectiveness. The model shows it’s performance almost at par with the established models, involving minimum modeling expertise. The findings and results of the present work will be helpful for the town planners and engineers on a regional scale for generalized planning and assessment.


2020 ◽  
Vol 10 (18) ◽  
pp. 6335 ◽  
Author(s):  
Kamila Pawluszek-Filipiak ◽  
Natalia Oreńczak ◽  
Marta Pasternak

To mitigate the negative effects of landslide occurrence, there is a need for effective landslide susceptibility mapping (LSM). The fundamental source for LSM is landslide inventory. Unfortunately, there are still areas where landslide inventories are not generated due to financial or reachability constraints. Considering this led to the following research question: can we model landslide susceptibility in an area for which landslide inventory is not available but where such is available for surrounding areas? To answer this question, we performed cross-modeling by using various strategies for landslide susceptibility. Namely, landslide susceptibility was cross-modeled by using two adjacent regions (“Łososina” and “Gródek”) separated by the Rożnów Lake and Dunajec River. Thus, 46% and 54% of the total detected landslides were used for the LSM in “Łososina” and “Gródek” model, respectively. Various topographical, geological, hydrological and environmental landslide-conditioning factors (LCFs) were created. These LCFs were generated on the basis of the Digital Elevation Model (DEM), Sentinel-2A data, a digitized geological and soil suitability map, precipitation, the road network and the Różnów lake shapefile. For LSM, we applied the Frequency Ratio (FR) and Landslide Susceptibility Index (LSI) methods. Five zones showing various landslide susceptibilities were generated via Natural Jenks. The Seed Cell Area Index (SCAI) and Relative Landslide Density Index were used for model validation. Even when the SCAI indicated extremely high values for “very low” susceptibility classes and very small values for “very high” susceptibility classes in the training and validation areas, the accuracy of the LSM in the validation areas was significantly lower. In the “Łososina” model, 90% and 57% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. In the “Gródek” model, 86% and 46% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. Moreover, the comparison between these two models was performed. Discrepancies between these two models exist in the areas of critical geological structures (thrust and fault proximity), and the reliability for such susceptibility zones can be low (2–3 susceptibility zone difference). However, such areas cover only 11% of the analyzed area; thus, we can conclude that in remaining regions (89%), LSM generated by the inventory for the surrounding area can be useful. Therefore, the low reliability of such a map in areas of critical geological structures should be borne in mind.


Sign in / Sign up

Export Citation Format

Share Document