Communality from equal weight for GIS-based landslide susceptibility mapping

2020 ◽  
Author(s):  
Sandip Som ◽  
Saibal Ghosh ◽  
Soumitra Dasgupta ◽  
Thrideep Kumar ◽  
J. N. Hindayar ◽  
...  

Abstract Modeling landslide susceptibility is one of the important aspects of land use planning and risk management. Several modeling methods are available based either on highly specialized knowledge on causative attributes or on good landslide inventory data to use as training and testing attribute on model development. Understandably, these two criteria are rarely available for local land regulators. This paper presents a new model methodology, which requires minimum knowledge of causative attributes and does not depend on landslide inventory. As landslide causes due to the combined effect of causative attributes, this model utilizes communality (common variance) of the attributes, extracted by exploratory factor analysis and used for calculation of landslide susceptibility index. The model can understand the inter-relationship of different geo-environmental attributes responsible for landslide along with identification and prioritization of attributes on model performance to delineate non-performing attributes. Finally, the model performance is compared with the well established AHP method (knowledge driven) and FRM method (data driven) by cut-off independent ROC curves along with cost-effectiveness. The model shows it’s performance almost at par with the established models, involving minimum modeling expertise. The findings and results of the present work will be helpful for the town planners and engineers on a regional scale for generalized planning and assessment.

2019 ◽  
Vol 9 (1) ◽  
pp. 171 ◽  
Author(s):  
Wei Chen ◽  
Zenghui Sun ◽  
Jichang Han

The main aim of this study was to compare the performances of the hybrid approaches of traditional bivariate weights of evidence (WoE) with multivariate logistic regression (WoE-LR) and machine learning-based random forest (WoE-RF) for landslide susceptibility mapping. The performance of the three landslide models was validated with receiver operating characteristic (ROC) curves and area under the curve (AUC). The results showed that the areas under the curve obtained using the WoE, WoE-LR, and WoE-RF methods were 0.720, 0.773, and 0.802 for the training dataset, and were 0.695, 0.763, and 0.782 for the validation dataset, respectively. The results demonstrate the superiority of hybrid models and that the resultant maps would be useful for land use planning in landslide-prone areas.


2021 ◽  
Vol 13 (20) ◽  
pp. 4129
Author(s):  
Muhammad Afaq Hussain ◽  
Zhanlong Chen ◽  
Run Wang ◽  
Muhammad Shoaib

Landslide classification and identification along Karakorum Highway (KKH) is still challenging due to constraints of proposed approaches, harsh environment, detail analysis, complicated natural landslide process due to tectonic activities, and data availability problems. A comprehensive landslide inventory and a landslide susceptibility mapping (LSM) along the Karakorum Highway were created in recent research. The extreme gradient boosting (XGBoost) and random forest (RF) models were used to compare and forecast the association between causative parameters and landslides. These advanced machine learning (ML) models can measure environmental issues and risks for any area on a regional scale. Initially, 74 landslide locations were determined along the KKH to prepare the landslide inventory map using different data. The landslides were randomly divided into two sets for training and validation at a proportion of 7/3. Fifteen landslide conditioning variables were produced for susceptibility mapping. The interferometric synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technique investigated the deformation movement of extracted models in the susceptible zones. It revealed a high line of sight (LOS) deformation velocity in both models’ sensitive zones. For accuracy comparison, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve approach was used, which showed 93.44% and 92.22% accuracy for XGBoost and RF, respectively. The XGBoost method produced superior results, combined with PS-InSAR results to create a new LSM for the area. This improved susceptibility model will aid in mitigating the landslide disaster, and the results may assist in the safe operation of the highway in the research area.


2013 ◽  
Vol 1 (2) ◽  
pp. 957-1000 ◽  
Author(s):  
M. Fressard ◽  
Y. Thiery ◽  
O. Maquaire

Abstract. The objective of this paper is to assess the impact of the datasets quality for the landslide susceptibility mapping using multivariate statistical modelling methods at detailed scale. This research is conducted in the Pays d'Auge plateau (Normandy, France) with a scale objective of 1/10000, in order to fit the French guidelines on risk assessment. Five sets of data of increasing quality (considering accuracy, scale fitting, geomophological significance) and cost of acquisition are used to map the landslide susceptibility using logistic regression. The best maps obtained with each set of data are compared on the basis of different statistical accuracy indicators (ROC curves and relative error calculation), linear cross correlation and expert opinion. The results highlights that only high quality sets of data supplied with detailed geomorphological variables (i.e. field inventory and surficial formations maps) can predict a satisfying proportion of landslides on the study area.


2020 ◽  
Vol 10 (24) ◽  
pp. 9038
Author(s):  
Nuno Lapa ◽  
Fernando M. F. S. Marques ◽  
Aurora Rodrigues

Mass wasting events are the main processes of sedimentary dynamics that affect the marine environment and which, due to their spatial and temporal variability, are difficult to study and evaluate. Affecting the marine floor, between the coastline and the abyssal plain, these processes are triggered by multiple causes, having different magnitudes and causing drastic changes and impacts on the marine environment and human activities. In this paper, the submarine landslide susceptibility affecting the upper course of the Aveiro canyon (West Iberian Margin) is addressed using statistical models which are based on the statistical relations between a landslide inventory and the landslide predisposing factors bathymetry, sediment cover, slope angle, aspect and curvature. The statistical methods were the widely proven bivariate information value (IV) and the multivariate logistic regression (LR). The model results were validated against the landslide inventory using receiver operating characteristic (ROC) curves and the corresponding area under the curve (AUC), which provided satisfactory results, with IV AUC = 0.79 and LR AUC = 0.83, in spite of the limitations of the databases used in this study. The results obtained suggest that these methods may be useful for the preliminary assessment of sea floor slope instability at a regional scale of analysis, enabling the selection of sites to be studied with much more detailed and expensive methods.


2020 ◽  
Vol 10 (18) ◽  
pp. 6335 ◽  
Author(s):  
Kamila Pawluszek-Filipiak ◽  
Natalia Oreńczak ◽  
Marta Pasternak

To mitigate the negative effects of landslide occurrence, there is a need for effective landslide susceptibility mapping (LSM). The fundamental source for LSM is landslide inventory. Unfortunately, there are still areas where landslide inventories are not generated due to financial or reachability constraints. Considering this led to the following research question: can we model landslide susceptibility in an area for which landslide inventory is not available but where such is available for surrounding areas? To answer this question, we performed cross-modeling by using various strategies for landslide susceptibility. Namely, landslide susceptibility was cross-modeled by using two adjacent regions (“Łososina” and “Gródek”) separated by the Rożnów Lake and Dunajec River. Thus, 46% and 54% of the total detected landslides were used for the LSM in “Łososina” and “Gródek” model, respectively. Various topographical, geological, hydrological and environmental landslide-conditioning factors (LCFs) were created. These LCFs were generated on the basis of the Digital Elevation Model (DEM), Sentinel-2A data, a digitized geological and soil suitability map, precipitation, the road network and the Różnów lake shapefile. For LSM, we applied the Frequency Ratio (FR) and Landslide Susceptibility Index (LSI) methods. Five zones showing various landslide susceptibilities were generated via Natural Jenks. The Seed Cell Area Index (SCAI) and Relative Landslide Density Index were used for model validation. Even when the SCAI indicated extremely high values for “very low” susceptibility classes and very small values for “very high” susceptibility classes in the training and validation areas, the accuracy of the LSM in the validation areas was significantly lower. In the “Łososina” model, 90% and 57% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. In the “Gródek” model, 86% and 46% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. Moreover, the comparison between these two models was performed. Discrepancies between these two models exist in the areas of critical geological structures (thrust and fault proximity), and the reliability for such susceptibility zones can be low (2–3 susceptibility zone difference). However, such areas cover only 11% of the analyzed area; thus, we can conclude that in remaining regions (89%), LSM generated by the inventory for the surrounding area can be useful. Therefore, the low reliability of such a map in areas of critical geological structures should be borne in mind.


2020 ◽  
Author(s):  
Vasil Yordanov ◽  
Maria Antonia Brovelli

Abstract Landslide susceptibility mapping is a crucial initial step in risk mitigation strategies. Landslide hazards are widely spread all over the world and, as such, mapping the relevant susceptibility levels is in constant research and development. As a result, numerous modelling techniques and approaches have been adopted by scholars, implementing these models at different scales and with different terrains, in search of the best-performing strategy. Nevertheless, a direct comparison is not possible unless the strategies are implemented under the same environmental conditions and scenarios. The aim of this work is to implement three statistical-based models (Statistical Index, Logistic Regression, and Random Forest) at the basin scale, using various scenarios for the input datasets (terrain variables), training samples and ratios, and validation metrics. A reassessment of the original input data was carried out to improve the model performance. In total, 79 maps were obtained using different combinations with some highly satisfactory outcomes and others that are barely acceptable. Random Forest achieved the highest scores in most of the cases, proving to be a reliable modelling approach. While Statistical Index passes the evaluation tests, most of the resulting maps were considered unreliable. This research highlighted the importance of a complete and up-to-date landslide inventory, the knowledge of local conditions, as well as the pre- and post-analysis evaluation of the input and output combinations.


Sign in / Sign up

Export Citation Format

Share Document