scholarly journals Adaptive Feature Weighted Fusion Nested U-Net with Discrete Wavelet Transform for Change Detection of High-Resolution Remote Sensing Images

2021 ◽  
Vol 13 (24) ◽  
pp. 4971
Author(s):  
Congcong Wang ◽  
Wenbin Sun ◽  
Deqin Fan ◽  
Xiaoding Liu ◽  
Zhi Zhang

The characteristics of a wide variety of scales about objects and complex texture features of high-resolution remote sensing images make deep learning-based change detection methods the mainstream method. However, existing deep learning methods have problems with spatial information loss and insufficient feature representation, resulting in unsatisfactory effects of small objects detection and boundary positioning in high-resolution remote sensing images change detection. To address the problems, a network architecture based on 2-dimensional discrete wavelet transform and adaptive feature weighted fusion is proposed. The proposed network takes Siamese network and Nested U-Net as the backbone; 2-dimensional discrete wavelet transform is used to replace the pooling layer; and the inverse transform is used to replace the upsampling to realize image reconstruction, reduce the loss of spatial information, and fully retain the original image information. In this way, the proposed network can accurately detect changed objects of different scales and reconstruct change maps with clear boundaries. Furthermore, different feature fusion methods of different stages are proposed to fully integrate multi-scale and multi-level features and improve the comprehensive representation ability of features, so as to achieve a more refined change detection effect while reducing pseudo-changes. To verify the effectiveness and advancement of the proposed method, it is compared with seven state-of-the-art methods on two datasets of Lebedev and SenseTime from the three aspects of quantitative analysis, qualitative analysis, and efficiency analysis, and the effectiveness of proposed modules is validated by an ablation study. The results of quantitative analysis and efficiency analysis show that, under the premise of taking into account the operation efficiency, our method can improve the recall while ensuring the detection precision, and realize the improvement of the overall detection performance. Specifically, it shows an average improvement of 37.9% and 12.35% on recall, and 34.76% and 11.88% on F1 with the Lebedev and SenseTime datasets, respectively, compared to other methods. The qualitative analysis shows that our method has better performance on small objects detection and boundary positioning than other methods, and a more refined change map can be obtained.

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
K. Parvathi ◽  
B. S. Prakasa Rao ◽  
M. Mariya Das ◽  
T. V. Rao

The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal) and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.


2020 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Zhiyong Xu ◽  
Weicun Zhang ◽  
Tianxiang Zhang ◽  
Jiangyun Li

Semantic segmentation is a significant method in remote sensing image (RSIs) processing and has been widely used in various applications. Conventional convolutional neural network (CNN)-based semantic segmentation methods are likely to lose the spatial information in the feature extraction stage and usually pay little attention to global context information. Moreover, the imbalance of category scale and uncertain boundary information meanwhile exists in RSIs, which also brings a challenging problem to the semantic segmentation task. To overcome these problems, a high-resolution context extraction network (HRCNet) based on a high-resolution network (HRNet) is proposed in this paper. In this approach, the HRNet structure is adopted to keep the spatial information. Moreover, the light-weight dual attention (LDA) module is designed to obtain global context information in the feature extraction stage and the feature enhancement feature pyramid (FEFP) structure is promoted and employed to fuse the contextual information of different scales. In addition, to achieve the boundary information, we design the boundary aware (BA) module combined with the boundary aware loss (BAloss) function. The experimental results evaluated on Potsdam and Vaihingen datasets show that the proposed approach can significantly improve the boundary and segmentation performance up to 92.0% and 92.3% on overall accuracy scores, respectively. As a consequence, it is envisaged that the proposed HRCNet model will be an advantage in remote sensing images segmentation.


2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2020 ◽  
Vol 166 ◽  
pp. 183-200 ◽  
Author(s):  
Chenxiao Zhang ◽  
Peng Yue ◽  
Deodato Tapete ◽  
Liangcun Jiang ◽  
Boyi Shangguan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document