scholarly journals A Random Forest Algorithm for Retrieving Canopy Chlorophyll Content of Wheat and Soybean Trained with PROSAIL Simulations Using Adjusted Average Leaf Angle

2021 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Quanjun Jiao ◽  
Qi Sun ◽  
Bing Zhang ◽  
Wenjiang Huang ◽  
Huichun Ye ◽  
...  

Canopy chlorophyll content (CCC) is an important indicator for crop-growth monitoring and crop productivity estimation. The hybrid method, involving the PROSAIL radiative transfer model and machine learning algorithms, has been widely applied for crop CCC retrieval. However, PROSAIL’s homogeneous canopy hypothesis limits the ability to use the PROSAIL-based CCC estimation across different crops with a row structure. In addition to leaf area index (LAI), average leaf angle (ALA) is the most important canopy structure factor in the PROSAIL model. Under the same LAI, adjustment of the ALA can make a PROSAIL simulation obtain the same canopy gap as the heterogeneous canopy at a specific observation angle. Therefore, parameterization of an adjusted ALA (ALAadj) is an optimal choice to make the PROSAIL model suitable for specific row-planted crops. This paper attempted to improve PROSAIL-based CCC retrieval for different crops, using a random forest algorithm, by introducing the prior knowledge of crop-specific ALAadj. Based on the field reflectance spectrum at nadir, leaf area index, and leaf chlorophyll content, parameterization of the ALAadj in the PROSAIL model for wheat and soybean was carried out. An algorithm integrating the random forest and PROSAIL simulations with prior ALAadj information was developed for wheat and soybean CCC retrieval. Ground-measured CCC measurements were used to validate the CCC retrieved from canopy spectra. The results showed that the ALAadj values (62 degrees for wheat; 45 degrees for soybean) that were parameterized for the PROSAIL model demonstrated good discrimination between the two crops. The proposed algorithm improved the CCC retrieval accuracy for wheat and soybean, regardless of whether continuous visible to near-infrared spectra with 50 bands (RMSE from 39.9 to 32.9 μg cm−2; R2 from 0.67 to 0.76) or discrete spectra with 13 bands (RMSE from 43.9 to 33.7 μg cm−2; R2 from 0.63 to 0.74) and nine bands (RMSE from 45.1 to 37.0 μg cm−2; R2 from 0.61 to 0.71) were used. The proposed hybrid algorithm, based on PROSAIL simulations with ALAadj, has the potential for satellite-based CCC estimation across different crop types, and it also has a good reference value for the retrieval of other crop parameters.

2021 ◽  
Vol 13 (16) ◽  
pp. 3175
Author(s):  
Naichen Xing ◽  
Wenjiang Huang ◽  
Huichun Ye ◽  
Yu Ren ◽  
Qiaoyun Xie

Leaf area index (LAI) and canopy chlorophyll density (CCD) are key biophysical and biochemical parameters utilized in winter wheat growth monitoring. In this study, we would like to exploit the advantages of three canonical types of spectral vegetation indices: indices sensitive to LAI, indices sensitive to chlorophyll content, and indices suitable for both parameters. In addition, two methods for joint retrieval were proposed. The first method is to develop integration-based indices incorporating LAI-sensitive and CCD-sensitive indices. The second method is to create a transformed triangular vegetation index (TTVI2) based on the spectral and physiological characteristics of the parameters. PROSAIL, as a typical radiative transfer model embedded with physical laws, was used to build estimation models between the indices and the relevant parameters. Validation was conducted against a field-measured hyperspectral dataset for four distinct growth stages and pooled data. The results indicate that: (1) the performance of the integrated indices from the first method are various because of the component indices; (2) TTVI2 is an excellent predictor for joint retrieval, with the highest R2 values of 0.76 and 0.59, the RMSE of 0.93 m2/m2 and 104.66 μg/cm2, and the RRMSE (Relative RMSE) of 12.76% and 16.96% for LAI and CCD, respectively.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2460 ◽  
Author(s):  
Yangyang Zhang ◽  
Jian Yang ◽  
Xiuguo Liu ◽  
Lin Du ◽  
Shuo Shi ◽  
...  

Leaf area index (LAI) is an important biophysical parameter, which can be effectively applied in the estimation of vegetation growth status. At present, amounts of studies just focused on the LAI estimation of a single plant type, while plant types are usually mixed rather than single distribution. In this study, the suitability of GF-1 data for multi-species LAI estimation was evaluated by using Gaussian process regression (GPR), and a look-up table (LUT) combined with a PROSAIL radiative transfer model. Then, the performance of the LUT and GPR for multi-species LAI estimation was analyzed in term of 15 different band combinations and 10 published vegetation indices (VIs). Lastly, the effect of the different band combinations and published VIs on the accuracy of LAI estimation was discussed. The results indicated that GF-1 data exhibited a good potential for multi-species LAI retrieval. Then, GPR exhibited better performance than that of LUT for multi-species LAI estimation. What is more, modified soil adjusted vegetation index (MSAVI) was selected based on the GPR algorithm for multi-species LAI estimation with a lower root mean squared error (RMSE = 0.6448 m2/m2) compared to other band combinations and VIs. Then, this study can provide guidance for multi-species LAI estimation.


2020 ◽  
Vol 42 (4) ◽  
pp. 1181-1200
Author(s):  
Estefanía Piegari ◽  
Juan I. Gossn ◽  
Francisco Grings ◽  
Verónica Barraza Bernadas ◽  
Ángela B. Juárez ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Tiangang Yin ◽  
Jianbo Qi ◽  
Bruce D. Cook ◽  
Douglas C. Morton ◽  
Shanshan Wei ◽  
...  

Airborne lidar point clouds of vegetation capture the 3-D distribution of its scattering elements, including leaves, branches, and ground features. Assessing the contribution from vegetation to the lidar point clouds requires an understanding of the physical interactions between the emitted laser pulses and their targets. Most of the current methods to estimate the gap probability ( P gap ) or leaf area index (LAI) from small-footprint airborne laser scan (ALS) point clouds rely on either point-number-based (PNB) or intensity-based (IB) approaches, with additional empirical correlations with field measurements. However, site-specific parameterizations can limit the application of certain methods to other landscapes. The universality evaluation of these methods requires a physically based radiative transfer model that accounts for various lidar instrument specifications and environmental conditions. We conducted an extensive study to compare these approaches for various 3-D forest scenes using a point-cloud simulator developed for the latest version of the discrete anisotropic radiative transfer (DART) model. We investigated a range of variables for possible lidar point intensity, including radiometric quantities derived from Gaussian Decomposition (GD), such as the peak amplitude, standard deviation, integral of Gaussian profiles, and reflectance. The results disclosed that the PNB methods fail to capture the exact P gap as footprint size increases. By contrast, we verified that physical methods using lidar point intensity defined by either the distance-weighted integral of Gaussian profiles or reflectance can estimate P gap and LAI with higher accuracy and reliability. Additionally, the removal of certain additional empirical correlation coefficients is feasible. Routine use of small-footprint point-cloud radiometric measures to estimate P gap and the LAI potentially confirms a departure from previous empirical studies, but this depends on additional parameters from lidar instrument vendors.


1969 ◽  
Vol 47 (12) ◽  
pp. 1989-1994 ◽  
Author(s):  
T. B. Daynard

In this paper, a mathematical attempt is made to predict the effects of leaf area index, leaf angle, and leaf spectral properties on changes in the relative composition of short-wave radiant fluxes as they penetrate plant canopies. Results of this theoretical analysis indicate that a sizeable change in the quality of visible radiation will only occur if the canopy is sufficiently dense to intercept at least 98% of the incident flux one or more times. By contrast, a significant increase in the proportion of infrared radiation is predicted within plant communities, even those of a low effective leaf area index. For natural plant communities, the results would indicate a minimal change in the composition of penetrating radiation at solar noon and a maximal change at sunrise or sunset.The implications of these phenomena to plant morphogenesis and to radiation-measuring techniques are discussed.


Sign in / Sign up

Export Citation Format

Share Document