scholarly journals SI-STSAR-7: A Large SAR Images Dataset with Spatial and Temporal Information for Classification of Winter Sea Ice in Hudson Bay

2021 ◽  
Vol 14 (1) ◽  
pp. 168
Author(s):  
Wei Song ◽  
Wen Gao ◽  
Qi He ◽  
Antonio Liotta ◽  
Weiqi Guo

Remote sensing satellites have been broadly applied to sea ice monitoring. The substantial increase in satellite imagery provides a large amount of data support for deep learning methods in the sea ice classification field. However, there is a lack of public remote sensing datasets to facilitate sea ice classification with spatial and temporal information and to benchmark the deep learning methods. In this paper, we provide a labeled large sea ice dataset derived from time-series sentinel-1 SAR images, dubbed SI-STSAR-7, and a validated dataset construction method for sea ice classification research. The SI-STSAR-7 dataset includes seven different sea ice types corresponding to different sea ice development stages in Hudson Bay during winter, and its samples are time sequences of SAR image patches in order to embody the differences of backscattering intensity and textures between different sea ice types, as well as the change of sea ice with time. We construct the dataset by first performing noise reduction and mitigation of incidence angle dependence on SAR images, and then producing data samples and labeling them based on our proposed sample-producing principles and the weekly regional ice charts provided by Canadian Ice Service. Three baseline classification methods are developed on SI-STSAR-7 to establish benchmarks, which are evaluated with accuracy and kappa coefficient. The sample-producing principles are verified through experiments. Based on the experimental results, sea ice classification can be implemented well on SI-STSAR-7.

2020 ◽  
pp. 102952
Author(s):  
Atieh Khodadadi ◽  
Soheila Molaei ◽  
Mehdi Teimouri ◽  
Hadi Zare

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2419
Author(s):  
Georg Steinbuss ◽  
Mark Kriegsmann ◽  
Christiane Zgorzelski ◽  
Alexander Brobeil ◽  
Benjamin Goeppert ◽  
...  

The diagnosis and the subtyping of non-Hodgkin lymphoma (NHL) are challenging and require expert knowledge, great experience, thorough morphological analysis, and often additional expensive immunohistological and molecular methods. As these requirements are not always available, supplemental methods supporting morphological-based decision making and potentially entity subtyping are required. Deep learning methods have been shown to classify histopathological images with high accuracy, but data on NHL subtyping are limited. After annotation of histopathological whole-slide images and image patch extraction, we trained and optimized an EfficientNet convolutional neuronal network algorithm on 84,139 image patches from 629 patients and evaluated its potential to classify tumor-free reference lymph nodes, nodal small lymphocytic lymphoma/chronic lymphocytic leukemia, and nodal diffuse large B-cell lymphoma. The optimized algorithm achieved an accuracy of 95.56% on an independent test set including 16,960 image patches from 125 patients after the application of quality controls. Automatic classification of NHL is possible with high accuracy using deep learning on histopathological images and routine diagnostic applications should be pursued.


2021 ◽  
Author(s):  
Cong Huang ◽  
Yao Yang ◽  
Huajun Wang ◽  
Yu Ma ◽  
Jinquan Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document