scholarly journals BO-DRNet: An Improved Deep Learning Model for Oil Spill Detection by Polarimetric Features from SAR Images

2022 ◽  
Vol 14 (2) ◽  
pp. 264
Author(s):  
Dawei Wang ◽  
Jianhua Wan ◽  
Shanwei Liu ◽  
Yanlong Chen ◽  
Muhammad Yasir ◽  
...  

Oil spill pollution at sea causes significant damage to marine ecosystems. Quad-polarimetric Synthetic Aperture Radar (SAR) has become an essential technology since it can provide polarization features for marine oil spill detection. Using deep learning models based on polarimetric features, oil spill detection can be achieved. However, there is insufficient feature extraction due to model depth, small reception field lend due to loss of target information, and fixed hyperparameter for models. The effect of oil spill detection is still incomplete or misclassified. To solve the above problems, we propose an improved deep learning model named BO-DRNet. The model can obtain a more sufficiently and fuller feature by ResNet-18 as the backbone in encoder of DeepLabv3+, and Bayesian Optimization (BO) was used to optimize the model’s hyperparameters. Experiments were conducted based on ten prominent polarimetric features were extracted from three quad-polarimetric SAR images obtained by RADARSAT-2. Experimental results show that compared with other deep learning models, BO-DRNet performs best with a mean accuracy of 74.69% and a mean dice of 0.8551. This paper provides a valuable tool to manage upcoming disasters effectively.

Author(s):  
Hsu-Heng Yen ◽  
Ping-Yu Wu ◽  
Pei-Yuan Su ◽  
Chia-Wei Yang ◽  
Yang-Yuan Chen ◽  
...  

Abstract Purpose Management of peptic ulcer bleeding is clinically challenging. Accurate characterization of the bleeding during endoscopy is key for endoscopic therapy. This study aimed to assess whether a deep learning model can aid in the classification of bleeding peptic ulcer disease. Methods Endoscopic still images of patients (n = 1694) with peptic ulcer bleeding for the last 5 years were retrieved and reviewed. Overall, 2289 images were collected for deep learning model training, and 449 images were validated for the performance test. Two expert endoscopists classified the images into different classes based on their appearance. Four deep learning models, including Mobile Net V2, VGG16, Inception V4, and ResNet50, were proposed and pre-trained by ImageNet with the established convolutional neural network algorithm. A comparison of the endoscopists and trained deep learning model was performed to evaluate the model’s performance on a dataset of 449 testing images. Results The results first presented the performance comparisons of four deep learning models. The Mobile Net V2 presented the optimal performance of the proposal models. The Mobile Net V2 was chosen for further comparing the performance with the diagnostic results obtained by one senior and one novice endoscopists. The sensitivity and specificity were acceptable for the prediction of “normal” lesions in both 3-class and 4-class classifications. For the 3-class category, the sensitivity and specificity were 94.83% and 92.36%, respectively. For the 4-class category, the sensitivity and specificity were 95.40% and 92.70%, respectively. The interobserver agreement of the testing dataset of the model was moderate to substantial with the senior endoscopist. The accuracy of the determination of endoscopic therapy required and high-risk endoscopic therapy of the deep learning model was higher than that of the novice endoscopist. Conclusions In this study, the deep learning model performed better than inexperienced endoscopists. Further improvement of the model may aid in clinical decision-making during clinical practice, especially for trainee endoscopist.


2021 ◽  
Vol 27 ◽  
Author(s):  
Qi Zhou ◽  
Wenjie Zhu ◽  
Fuchen Li ◽  
Mingqing Yuan ◽  
Linfeng Zheng ◽  
...  

Objective: To verify the ability of the deep learning model in identifying five subtypes and normal images in noncontrast enhancement CT of intracranial hemorrhage. Method: A total of 351 patients (39 patients in the normal group, 312 patients in the intracranial hemorrhage group) performed with intracranial hemorrhage noncontrast enhanced CT were selected, with 2768 images in total (514 images for the normal group, 398 images for the epidural hemorrhage group, 501 images for the subdural hemorrhage group, 497 images for the intraventricular hemorrhage group, 415 images for the cerebral parenchymal hemorrhage group, and 443 images for the subarachnoid hemorrhage group). Based on the diagnostic reports of two radiologists with more than 10 years of experience, the ResNet-18 and DenseNet-121 deep learning models were selected. Transfer learning was used. 80% of the data was used for training models, 10% was used for validating model performance against overfitting, and the last 10% was used for the final evaluation of the model. Assessment indicators included accuracy, sensitivity, specificity, and AUC values. Results: The overall accuracy of ResNet-18 and DenseNet-121 models were 89.64% and 82.5%, respectively. The sensitivity and specificity of identifying five subtypes and normal images were above 0.80. The sensitivity of DenseNet-121 model to recognize intraventricular hemorrhage and cerebral parenchymal hemorrhage was lower than 0.80, 0.73, and 0.76 respectively. The AUC values of the two deep learning models were above 0.9. Conclusion: The deep learning model can accurately identify the five subtypes of intracranial hemorrhage and normal images, and it can be used as a new tool for clinical diagnosis in the future.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Yannan Yu ◽  
Soren Christensen ◽  
Yuan Xie ◽  
Enhao Gong ◽  
Maarten G Lansberg ◽  
...  

Objective: Ischemic core prediction from CT perfusion (CTP) remains inaccurate compared with gold standard diffusion-weighted imaging (DWI). We evaluated if a deep learning model to predict the DWI lesion from MR perfusion (MRP) could facilitate ischemic core prediction on CTP. Method: Using the multi-center CRISP cohort of acute ischemic stroke patient with CTP before thrombectomy, we included patients with major reperfusion (TICI score≥2b), adequate image quality, and follow-up MRI at 3-7 days. Perfusion parameters including Tmax, mean transient time, cerebral blood flow (CBF), and cerebral blood volume were reconstructed by RAPID software. Core lab experts outlined the stroke lesion on the follow-up MRI. A previously trained MRI model in a separate group of patients was used as a starting point, which used MRP parameters as input and RAPID ischemic core on DWI as ground truth. We fine-tuned this model, using CTP parameters as input, and follow-up MRI as ground truth. Another model was also trained from scratch with only CTP data. 5-fold cross validation was used. Performance of the models was compared with ischemic core (rCBF≤30%) from RAPID software to identify the presence of a large infarct (volume>70 or >100ml). Results: 94 patients in the CRISP trial met the inclusion criteria (mean age 67±15 years, 52% male, median baseline NIHSS 18, median 90-day mRS 2). Without fine-tuning, the MRI model had an agreement of 73% in infarct >70ml, and 69% in >100ml; the MRI model fine-tuned on CT improved the agreement to 77% and 73%; The CT model trained from scratch had agreements of 73% and 71%; All of the deep learning models outperformed the rCBF segmentation from RAPID, which had agreements of 51% and 64%. See Table and figure. Conclusions: It is feasible to apply MRP-based deep learning model to CT. Fine-tuning with CTP data further improves the predictions. All deep learning models predict the stroke lesion after major recanalization better than thresholding approaches based on rCBF.


2019 ◽  
Author(s):  
Anshul Thakur ◽  
Michael Goldbaum ◽  
Siamak Yousefi

AbstractPurposeTo assess the accuracy of deep learning models to predict glaucoma development from fundus photographs several years prior to disease onset.DesignA deep learning model for prediction of glaucomatous optic neuropathy or visual field abnormality from color fundus photographs.ParticipantsWe retrospectively included 66,721 fundus photographs from 3,272 eyes of 1,636 subjects to develop deep leaning models.MethodFundus photographs and visual fields were carefully examined by two independent readers from the optic disc and visual field reading centers of the ocular hypertension treatment study (OHTS). When an abnormality was detected by the readers, subject was recalled for re-testing to confirm the abnormality and further confirmation by an endpoint committee. Using OHTS data, deep learning models were trained and tested using 85% of the fundus photographs and further validated (re-tested) on the remaining (held-out) 15% of the fundus photographs.Main Outcome MeasuresAccuracy and area under the receiver-operating characteristic curve (AUC).ResultsThe AUC of the deep learning model in predicting glaucoma development 4-7 years prior to disease onset was 0.77 (95% confidence interval 0.75, 0.79). The accuracy of the model in predicting glaucoma development about 1-3 years prior to disease onset was 0.88 (0.86, 0.91). The accuracy of the model in detecting glaucoma after onset was 0.95 (0.94, 0.96).ConclusionsDeep learning models can predict glaucoma development prior to disease onset with reasonable accuracy. Eyes with visual field abnormality but not glaucomatous optic neuropathy had a higher tendency to be missed by deep learning algorithms.


2020 ◽  
Vol 12 (14) ◽  
pp. 2260 ◽  
Author(s):  
Filippo Maria Bianchi ◽  
Martine M. Espeseth ◽  
Njål Borch

We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully designed neural network model for image segmentation trained on an extensive dataset, we obtain state-of-the-art performance in oil spill detection, achieving results that are comparable to results produced by human operators. We also introduce a classification task, which is novel in the context of oil spill detection in SAR. Specifically, after being detected, each oil spill is also classified according to different categories of its shape and texture characteristics. The classification results provide valuable insights for improving the design of services for oil spill monitoring by world-leading providers. Finally, we present our operational pipeline and a visualization tool for large-scale data, which allows detection and analysis of the historical occurrence of oil spills worldwide.


Sign in / Sign up

Export Citation Format

Share Document