scholarly journals Mapping Natura 2000 Habitat Conservation Status in a Pannonic Salt Steppe with Airborne Laser Scanning

2015 ◽  
Vol 7 (3) ◽  
pp. 2991-3019 ◽  
Author(s):  
András Zlinszky ◽  
Balázs Deák ◽  
Adam Kania ◽  
Anke Schroiff ◽  
Norbert Pfeifer
2014 ◽  
Vol 6 (9) ◽  
pp. 8056-8087 ◽  
Author(s):  
András Zlinszky ◽  
Anke Schroiff ◽  
Adam Kania ◽  
Balázs Deák ◽  
Werner Mücke ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1504
Author(s):  
Sylwia Szporak-Wasilewska ◽  
Hubert Piórkowski ◽  
Wojciech Ciężkowski ◽  
Filip Jarzombkowski ◽  
Łukasz Sławik ◽  
...  

The aim of this study is to evaluate the effectiveness of the identification of Natura 2000 wetland habitats (Alkaline fens—code 7230, and Transition mires and quaking bogs—code 7140) depending on various remotely sensed (RS) data acquired from an airborne platform. Both remote sensing data and botanical reference data were gathered for mentioned habitats in the Lower (LB) and Upper Biebrza (UB) River Valley and the Janowskie Forest (JF) in different seasonal stages. Several different classification scenarios were tested, and the ones that gave the best results for analyzed habitats were indicated in each campaign. In the final stage, a recommended term of data acquisition, as well as a list of remote sensing products, which allowed us to achieve the highest accuracy mapping for these two types of wetland habitats, were presented. Designed classification scenarios integrated different hyperspectral products such as Minimum Noise Fraction (MNF) bands, spectral indices and products derived from Airborne Laser Scanning (ALS) data representing topography (developed in SAGA), or statistical products (developed in OPALS—Orientation and Processing of Airborne Laser Scanning). The image classifications were performed using a Random Forest (RF) algorithm and a multi-classification approach. As part of the research, the correlation analysis of the developed remote sensing products was carried out, and the Recursive Feature Elimination with Cross-Validation (RFE-CV) analysis was performed to select the most important RS sub-products and thus increase the efficiency and accuracy of developing the final habitat distribution maps. The classification results showed that alkaline fens are better identified in summer (mean F1-SCORE equals 0.950 in the UB area, and 0.935 in the LB area), transition mires and quaking bogs that evolved on/or in the vicinity of alkaline fens in summer and autumn (mean F1-SCORE equals 0.931 in summer, and 0.923 in autumn in the UB area), and transition mires and quaking bogs that evolved on dystrophic lakes in spring and summer (mean F1-SCORE equals 0.953 in spring, and 0.948 in summer in the JF area). The study also points out that the classification accuracy of both wetland habitats is highly improved when combining selected hyperspectral products (MNF bands, spectral indices) with ALS topographical and statistical products. This article demonstrates that information provided by the synergetic use of data from different sensors can be used in mapping and monitoring both Natura 2000 wetland habitats for its future functional assessment and/or protection activities planning with high accuracy.


2011 ◽  
Vol 5 (3) ◽  
pp. 196-208 ◽  
Author(s):  
D. F. Laefer ◽  
T. Hinks ◽  
H. Carr ◽  
L. Truong-Hong

2021 ◽  
Vol 13 (4) ◽  
pp. 1917
Author(s):  
Alma Elizabeth Thuestad ◽  
Ole Risbøl ◽  
Jan Ingolf Kleppe ◽  
Stine Barlindhaug ◽  
Elin Rose Myrvoll

What can remote sensing contribute to archaeological surveying in subarctic and arctic landscapes? The pros and cons of remote sensing data vary as do areas of utilization and methodological approaches. We assessed the applicability of remote sensing for archaeological surveying of northern landscapes using airborne laser scanning (LiDAR) and satellite and aerial images to map archaeological features as a basis for (a) assessing the pros and cons of the different approaches and (b) assessing the potential detection rate of remote sensing. Interpretation of images and a LiDAR-based bare-earth digital terrain model (DTM) was based on visual analyses aided by processing and visualizing techniques. 368 features were identified in the aerial images, 437 in the satellite images and 1186 in the DTM. LiDAR yielded the better result, especially for hunting pits. Image data proved suitable for dwellings and settlement sites. Feature characteristics proved a key factor for detectability, both in LiDAR and image data. This study has shown that LiDAR and remote sensing image data are highly applicable for archaeological surveying in northern landscapes. It showed that a multi-sensor approach contributes to high detection rates. Our results have improved the inventory of archaeological sites in a non-destructive and minimally invasive manner.


2021 ◽  
Vol 491 ◽  
pp. 119225
Author(s):  
Einari Heinaro ◽  
Topi Tanhuanpää ◽  
Tuomas Yrttimaa ◽  
Markus Holopainen ◽  
Mikko Vastaranta

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


Author(s):  
Jorgen Wallerman ◽  
Kenneth Nystrom ◽  
Mats Nilsson ◽  
Peder Axensten ◽  
Mikael Egberth ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Schumacher ◽  
Marius Hauglin ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Background The age of forest stands is critical information for forest management and conservation, for example for growth modelling, timing of management activities and harvesting, or decisions about protection areas. However, area-wide information about forest stand age often does not exist. In this study, we developed regression models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58° and 65° N in an 18.2 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2, and existing public map data. We performed model validation on an independent data set consisting of 63 spruce stands with known age. Results The best modelling strategy was to fit independent linear regression models to each observed site index (SI) level and using a SI prediction map in the application of the models. The most important predictor variable was an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6% to 26%) for SI-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between − 1 and 3 years. The models improved with increasing SI and the RMSEs were largest for low SI stands older than 100 years. Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56 years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were 12 (22%) and 2 years (3%), respectively. Conclusions Tree height estimated from airborne laser scanning and predicted site index were the most important variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The models could be considered for practical applications, although we see considerable potential for improvements if better SI maps were available.


Sign in / Sign up

Export Citation Format

Share Document