airborne laser scanner
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 15)

H-INDEX

33
(FIVE YEARS 4)

Silva Fennica ◽  
2022 ◽  
Vol 56 (1) ◽  
Author(s):  
Lennart Noordermeer ◽  
Erik Næsset ◽  
Terje Gobakken

Newly developed positioning systems in cut-to-length harvesters enable georeferencing of individual trees with submeter accuracy. Together with detailed tree measurements recorded during processing of the tree, georeferenced harvester data are emerging as a valuable tool for forest inventory. Previous studies have shown that harvester data can be linked to airborne laser scanner (ALS) data to estimate a range of forest attributes. However, there is little empirical evidence of the benefits of improved positioning accuracy of harvester data. The two objectives of this study were to (1) assess the accuracy of timber volume estimation using harvester data and ALS data acquired with different scanners over multiple years and (2) assess how harvester positioning errors affect merchantable timber volume predicted and estimated from ALS data. We used harvester data from 33 commercial logging operations, comprising 93 731 harvested stems georeferenced with sub-meter accuracy, as plot-level training data in an enhanced area-based inventory approach. By randomly altering the tree positions in Monte Carlo simulations, we assessed how prediction and estimation errors were influenced by different combinations of simulated positioning errors and grid cell sizes. We simulated positioning errors of 1, 2, …, 15 m and used grid cells of 100, 200, 300 and 400 m. Values of root mean square errors obtained for cell-level predictions of timber volume differed significantly for the different grid cell sizes. The use of larger grid cells resulted in a greater accuracy of timber volume predictions, which were also less affected by positioning errors. Accuracies of timber volume estimates at logging operation level decreased significantly with increasing levels of positioning error. The results highlight the benefit of accurate positioning of harvester data in forest inventory applications. Further, the results indicate that when estimating timber volume from ALS data and inaccurately positioned harvester data, larger grid cells are beneficial.2


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Ngoc Quy BUI ◽  
Dinh Hien LE ◽  
Anh Quan DUONG ◽  
Quoc Long NGUYEN

LiDAR technology has been widely adopted as a proper method for land cover classification.Recently with the development of technology, LiDAR systems can now capture high-resolutionmultispectral bands images with high-density LiDAR point cloud simultaneously. Therefore, it opens newopportunities for more precise automatic land-use classification methods by utilizing LiDAR data. Thisarticle introduces a combining technique of point cloud classification algorithms. The algorithms includeground detection, building detection, and close point classification - the classification is based on pointclouds’ attributes. The main attributes are heigh, intensity, and NDVI index calculated from 4 bands ofcolors extracted from multispectral images for each point. Data of the Leica City Mapper LiDAR systemin an area of 80 ha in Quang Xuong town, Thanh Hoa province, Vietnam was used to deploy theclassification. The data is classified into eight different types of land use consist of asphalt road, otherground, low vegetation, medium vegetation, high vegetation, building, water, and other objects. Theclassification workflow was implemented in the TerraSolid suite, with the result of the automation processcame out with 97% overall accuracy of classification points. The


2021 ◽  
Vol 13 (18) ◽  
pp. 3611
Author(s):  
Jessica Esteban ◽  
Alfredo Fernández-Landa ◽  
José Luis Tomé ◽  
Cristina Gómez ◽  
Miguel Marchamalo

Understanding forest dynamics at the stand level is crucial for sustainable management. Landsat time series have been shown to be effective for identification of drastic changes, such as natural disturbances or clear-cuts, but detecting subtle changes requires further research. Time series of six Landsat-derived vegetation indexes (VIs) were analyzed with the BFAST (Breaks for Additive Season and Trend) algorithm aiming to characterize the changes resulting from harvesting practices of different intensities (clear-cutting, cutting with seed-trees, and thinning) in a Mediterranean forest area of Spain. To assess the contribution of airborne laser scanner (ALS) data and the potential implications of it being after or before the detected changes, two scenarios were defined (based on the year in which ALS data were acquired (2010), and thereby detecting changes from 2005 to 2010 (before ALS data) and from 2011 to 2016 (after ALS data). Pixels identified as change by BFAST were attributed with change in VI intensity and ALS-derived statistics (99th height percentile and forest canopy cover) for classification with random forests, and derivation of change maps. Fusion techniques were applied to leverage the potential of each individual VI change map and to reduce mapping errors. The Tasseled Cap Brightness (TCB) and Normalized Burn Ratio (NBR) indexes provided the most accurate results, the latter being more precise for thinning detection. Our results demonstrate the suitability of Landsat time series and ALS data to characterize forest stand changes caused by harvesting practices of different intensity, with improved accuracy when ALS data is acquired after the change occurs. Clear-cuttings were more readily detectable compared to cutting with seed-trees and thinning, detection of which required fusion approaches. This methodology could be implemented to produce annual cartography of harvesting practices, enabling more accurate statistics and spatially explicit identification of forest operations.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


2020 ◽  
Vol 457 ◽  
pp. 117768 ◽  
Author(s):  
Lennart Noordermeer ◽  
Terje Gobakken ◽  
Erik Næsset ◽  
Ole Martin Bollandsås

2019 ◽  
Vol 9 (18) ◽  
pp. 3887 ◽  
Author(s):  
Francisco Javier Ariza-López ◽  
José Rodríguez-Avi ◽  
Diego González-Aguilera ◽  
Pablo Rodríguez-Gonzálvez

A new statistical method for the quality control of the positional accuracy, useful in a wide range of data sets, is proposed and its use is illustrated through its application to airborne laser scanner (ALS) data. The quality control method is based on the use of a multinomial distribution that categorizes cases of errors according to metric tolerances. The use of the multinomial distribution is a very novel and powerful approach to the problem of evaluating positional accuracy, since it allows for eliminating the need for a parametric model for positional errors. Three different study cases based on ALS data (infrastructure, urban, and natural cases) that contain non-normal errors were used. Three positional accuracy controls with different tolerances were developed. In two of the control cases, the tolerances were defined by a Gaussian model, and in the third control case, the tolerances were defined from the quantiles of the observed error distribution. The analysis of the test results based on the type I and type II errors show that the method is able to control the positional accuracy of freely distributed data.


2019 ◽  
Vol 11 (18) ◽  
pp. 2145 ◽  
Author(s):  
Lennart Noordermeer ◽  
Roar Økseter ◽  
Hans Ole Ørka ◽  
Terje Gobakken ◽  
Erik Næsset ◽  
...  

Changes in forest areas have great impact on a range of ecosystem functions, and monitoring forest change across different spatial and temporal resolutions is a central task in forestry. At the spatial scales of municipalities, forest properties and stands, local inventories are carried out periodically to inform forest management, in which airborne laser scanner (ALS) data are often used to estimate forest attributes. As local forest inventories are repeated, the availability of bitemporal field and ALS data is increasing. The aim of this study was to assess the utility of bitemporal ALS data for classification of dominant height change, aboveground biomass change, forest disturbances, and forestry activities. We used data obtained from 558 field plots and four repeated ALS-based forest inventories in southeastern Norway, with temporal resolutions ranging from 11 to 15 years. We applied the k-nearest neighbor method for classification of: (i) increasing versus decreasing dominant height, (ii) increasing versus decreasing aboveground biomass, (iii) undisturbed versus disturbed forest, and (iv) forestry activities, namely untouched, partial harvest, and clearcut. Leave-one-out cross-validation revealed overall accuracies of 96%, 95%, 89%, and 88% across districts for the four change classifications, respectively. Thus, our results demonstrate that various changes in forest structure can be classified with high accuracy at plot level using data from repeated ALS-based forest inventories.


Sign in / Sign up

Export Citation Format

Share Document