scholarly journals An Algorithm for Surface Current Retrieval from X-band Marine Radar Images

2015 ◽  
Vol 7 (6) ◽  
pp. 7753-7767 ◽  
Author(s):  
Chengxi Shen ◽  
Weimin Huang ◽  
Eric Gill ◽  
Ruben Carrasco ◽  
Jochen Horstmann
Author(s):  
Francesco Serafino ◽  
Claudio Lugni ◽  
Francesco Soldovieri

This work deals with the sea state monitoring starting from marine radar images collected on a moving ship. For such a topic, one of the key factors affecting the reliability of the reconstruction procedure is the determination of the equivalent surface current that also accounts for the speed of the moving ship. Here, we propose a method able to evaluate also high values of the sea surface current. The reliability of the proposed procedure is shown by a numerical analysis with synthetic data. Finally, we present some preliminary results with measurements collected on a moving ship.


2019 ◽  
Vol 11 (9) ◽  
pp. 1031 ◽  
Author(s):  
Zhongbiao Chen ◽  
Biao Zhang ◽  
Vladimir Kudryavtsev ◽  
Yijun He ◽  
Xiaoqing Chu

The cross-spectral correlation approach has been used to estimate the wave spectrum from optical and radar images. This work aims to improve the cross-spectral approach to derive current velocity from the X-band marine radar image sequence, and evaluate the application conditions of the method. To reduce the dependency of gray levels on range and azimuth, radar images are preprocessed by the contrast-limited adaptive histogram equalization. Two-dimensional cross-spectral coherence and phase are derived from neighboring X-band marine radar images, and the phases with large coherences are used to estimate the phase velocity and angular frequency of waves, which are first fitted with the theoretical dispersion relation by different least square models, and then the current velocity can be determined. Compared with the current velocities measured by a current meter, the root-mean-square error, correlation coefficient, bias, and relative error are 0.15 m/s. 0.88, –0.05 m/s, and 7.79% for the north-south velocity, and 0.14 m/s, 0.86, 0.06 m/s, and 10.75% for the east-west velocity in the experimental area, respectively. The preprocessing, critical coherence, and the number of images for applying the cross-spectral approach, are discussed.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 19046-19057
Author(s):  
Yan Zheng ◽  
Zhen Shi ◽  
Zhizhong Lu ◽  
Wenfeng Ma
Keyword(s):  
X Band ◽  

2020 ◽  
Vol 58 (3) ◽  
pp. 2115-2123 ◽  
Author(s):  
Xinwei Chen ◽  
Weimin Huang ◽  
Chen Zhao ◽  
Yingwei Tian

2017 ◽  
Author(s):  
Giovanni Ludeno ◽  
Francesco Raffa ◽  
Francesco Soldovieri ◽  
Francesco Serafino

Abstract. This letter presents the monitoring results of the sea waves and the surface currents obtained by analyzing data acquired by a X-band marine radar in two different operative conditions, namely the short and medium pulse modes. In particular, we investigated the feasibility to use a medium radar pulse for sea state monitoring by comparing the performance in both the radar modes. The comparison was carried out by means of an experimental campaign and we observed a good agreement for surface current and sea state parameters estimation.


2019 ◽  
Vol 11 (9) ◽  
pp. 1030 ◽  
Author(s):  
Hessner ◽  
El Naggar ◽  
von Appen ◽  
Strass

Real-time quality-controlled surface current data derived from X-Band marine radar (MR) measurements were evaluated to estimate their operational reliability. The presented data were acquired by the standard commercial off-the-shelf MR-based sigma s6 WaMoS® II (WaMoS® II) deployed onboard the German Research vessel Polarstern. The measurement reliability is specified by an IQ value obtained by the WaMoS® II real-time quality control (rtQC). Data which pass the rtQC without objection are assumed to be reliable. For these data sets accuracy and correlation with corresponding vessel-mounted acoustic Doppler current profiler (ADCP) measurements are determined. To reduce potential misinterpretation due to short-term oceanic variability/turbulences, the evaluation of the WaMoS® II accuracy was carried out based on sliding means over 20 min of the reliable data only. The associated standard deviation σWaMoS = 0.02 m/s of the mean WaMoS® II measurements reflect a high precision of the measurement and the successful rtQC during different wave, current and weather conditions. The direct comparison of 7272 WaMoS® II/ADCP northward and eastward velocity data pairs yield a correlation of r ≥0.94, with bias∆ ≤0.06 m/s and σS=0.05 m/s. This confirms that the MR-based surface current measurements are accurate and reliable.


Sign in / Sign up

Export Citation Format

Share Document