scholarly journals A Classification-Segmentation Framework for the Detection of Individual Trees in Dense MMS Point Cloud Data Acquired in Urban Areas

2017 ◽  
Vol 9 (3) ◽  
pp. 277 ◽  
Author(s):  
Martin Weinmann ◽  
Michael Weinmann ◽  
Clément Mallet ◽  
Mathieu Brédif
2020 ◽  
Vol 12 (20) ◽  
pp. 3327 ◽  
Author(s):  
Eric Hyyppä ◽  
Xiaowei Yu ◽  
Harri Kaartinen ◽  
Teemu Hakala ◽  
Antero Kukko ◽  
...  

In this work, we compared six emerging mobile laser scanning (MLS) technologies for field reference data collection at the individual tree level in boreal forest conditions. The systems under study were an in-house developed AKHKA-R3 backpack laser scanner, a handheld Zeb-Horizon laser scanner, an under-canopy UAV (Unmanned Aircraft Vehicle) laser scanning system, and three above-canopy UAV laser scanning systems providing point clouds with varying point densities. To assess the performance of the methods for automated measurements of diameter at breast height (DBH), stem curve, tree height and stem volume, we utilized all of the six systems to collect point cloud data on two 32 m-by-32 m test sites classified as sparse (n = 42 trees) and obstructed (n = 43 trees). To analyze the data collected with the two ground-based MLS systems and the under-canopy UAV system, we used a workflow based on our recent work featuring simultaneous localization and mapping (SLAM) technology, a stem arc detection algorithm, and an iterative arc matching algorithm. This workflow enabled us to obtain accurate stem diameter estimates from the point cloud data despite a small but relevant time-dependent drift in the SLAM-corrected trajectory of the scanner. We found out that the ground-based MLS systems and the under-canopy UAV system could be used to measure the stem diameter (DBH) with a root mean square error (RMSE) of 2–8%, whereas the stem curve measurements had an RMSE of 2–15% that depended on the system and the measurement height. Furthermore, the backpack and handheld scanners could be employed for sufficiently accurate tree height measurements (RMSE = 2–10%) in order to estimate the stem volumes of individual trees with an RMSE of approximately 10%. A similar accuracy was obtained when combining stem curves estimated with the under-canopy UAV system and tree heights extracted with an above-canopy flying laser scanning unit. Importantly, the volume estimation error of these three MLS systems was found to be of the same level as the error corresponding to manual field measurements on the two test sites. To analyze point cloud data collected with the three above-canopy flying UAV systems, we used a random forest model trained on field reference data collected from nearby plots. Using the random forest model, we were able to estimate the DBH of individual trees with an RMSE of 10–20%, the tree height with an RMSE of 2–8%, and the stem volume with an RMSE of 20–50%. Our results indicate that ground-based and under-canopy MLS systems provide a promising approach for field reference data collection at the individual tree level, whereas the accuracy of above-canopy UAV laser scanning systems is not yet sufficient for predicting stem attributes of individual trees for field reference data with a high accuracy.


Drones ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 29 ◽  
Author(s):  
Andrew Marx ◽  
Yu-Hsi Chou ◽  
Kevin Mercy ◽  
Richard Windisch

The availability and precision of unmanned aerial systems (UAS) permit the repeated collection of very-high quality three-dimensional (3D) data to monitor high-interest areas, such as dams, urban areas, or erosion-prone coastlines. However, challenges exist in the temporal analysis of this data, specifically in conducting change-detection analysis on the high-quality point cloud data. These files are very large in size and contain points in varying locations that do not align between scenes. These large file sizes also limit the use of this data for individuals with low computational resources, such as first responders or forward-deployed soldiers. In response, this manuscript presents an approach that aggregates data spatially into voxels to provide the user with a lightweight, web-based exploitation system coupled with a flexible backend database. The system creates a robust set of tools to analyze large temporal stacks of 3D data and reduces data size by 78%, all while being able to query the original point cloud data. This approach offers a solution for organizations analyzing high-resolution, temporal point-clouds, as well as a possible solution for operations in areas with poor computational and connectivity resources requiring high-quality, 3D data for decision support and planning.


2018 ◽  
Vol 7 (8) ◽  
pp. 301 ◽  
Author(s):  
Mario Soilán ◽  
Belén Riveiro ◽  
Patricia Liñares ◽  
Marta Padín-Beltrán

A basic feature of modern and smart cities is their energetic sustainability, using clean and renewable energies and, therefore, reducing the carbon emissions, especially in large cities. Solar energy is one of the most important renewable energy sources, being more significant in sunny climate areas such as the South of Europe. However, the installation of solar panels should be carried out carefully, being necessary to collect information about building roofs, regarding its surface and orientation. This paper proposes a methodology aiming to automatically parametrize building roofs employing point cloud data from an Aerial Laser Scanner (ALS) source. This parametrization consists of extracting not only the area and orientation of the roofs in an urban environment, but also of studying the shading of the roofs, given a date and time of the day. This methodology has been validated using 3D point cloud data of the city of Santiago de Compostela (Spain), achieving roof area measurement errors in the range of ±3%, showing that even low-density ALS data can be useful in order to carry out further analysis with energetic perspective.


Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document