scholarly journals Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

Sensors ◽  
2017 ◽  
Vol 17 (11) ◽  
pp. 2639 ◽  
Author(s):  
Francisco Eugenio ◽  
Javier Marcello ◽  
Javier Martin ◽  
Dionisio Rodríguez-Esparragón
2021 ◽  
Vol 13 (21) ◽  
pp. 4215
Author(s):  
Steven R. Schill ◽  
Valerie Pietsch McNulty ◽  
F. Joseph Pollock ◽  
Fritjof Lüthje ◽  
Jiwei Li ◽  
...  

High-resolution benthic habitat data fill an important knowledge gap for many areas of the world and are essential for strategic marine conservation planning and implementing effective resource management. Many countries lack the resources and capacity to create these products, which has hindered the development of accurate ecological baselines for assessing protection needs for coastal and marine habitats and monitoring change to guide adaptive management actions. The PlanetScope (PS) Dove Classic SmallSat constellation delivers high-resolution imagery (4 m) and near-daily global coverage that facilitates the compilation of a cloud-free and optimal water column image composite of the Caribbean’s nearshore environment. These data were used to develop a first-of-its-kind regional thirteen-class benthic habitat map to 30 m water depth using an object-based image analysis (OBIA) approach. A total of 203,676 km2 of shallow benthic habitat across the Insular Caribbean was mapped, representing 5% coral reef, 43% seagrass, 15% hardbottom, and 37% other habitats. Results from a combined major class accuracy assessment yielded an overall accuracy of 80% with a standard error of less than 1% yielding a confidence interval of 78%–82%. Of the total area mapped, 15% of these habitats (31,311.7 km2) are within a marine protected or managed area. This information provides a baseline of ecological data for developing and executing more strategic conservation actions, including implementing more effective marine spatial plans, prioritizing and improving marine protected area design, monitoring condition and change for post-storm damage assessments, and providing more accurate habitat data for ecosystem service models.


2022 ◽  
Vol 304 ◽  
pp. 114262
Author(s):  
Daniele Ventura ◽  
Gianluca Mancini ◽  
Edoardo Casoli ◽  
Daniela Silvia Pace ◽  
Giovanna Jona Lasinio ◽  
...  

2020 ◽  
Author(s):  
Verner Brandbyge Ernstsen ◽  
Signe Schilling Hansen ◽  
Lars Øbro Hansen ◽  
Manfred Niederwieser ◽  
Ramona Baran ◽  
...  

<p>Shallow water coastal environments can be highly dynamic and comprise a range of dynamic geodiversity variables as well as a range of benthic habitats. It is challenging to map such dynamic shallow water coastal environments and their geodiversity variables and benthic habitats in high-resolution, high precision and full coverage, which is necessary in order to evaluate impact on the seabed and the benthic habitats from e.g. climate change (e.g. changing wind climate) or human disturbance (e.g. construction of wind parks, pipelines, etc.).</p><p>We have conducted successive high-resolution, high-precision airborne topobathymetric lidar surveys in combination with seabed groundtruthing (e.g. seabed sampling and diver observations) along existing monitoring lines in Rødsand lagoon, Denmark, in the western Baltic Sea. The coastal lagoon is a Natura 2000 site, located near the planned fixed connection between Germany and Denmark.</p><p>Here, we present high-resolution, high-precision mapping of geodiversity variables with a focus on seabed morphology and seabed sediments that constitute the abiotic structures of the benthic habitats. We demonstrate the role of the interaction between the dynamic coastal processes and the drowned underlying glacial landscape in relation to the spatial distribution of the seabed morphology and sediments as well as the benthic habitats. Finally, we discuss how to optimise the monitoring of dynamic geodiversity variables and abiotic benthic habitat structures in such dynamic shallow water coastal environments.</p><p> </p><p>Acknowledgements</p><p>This work was carried out as part of “WP4 – In situ remote sensing of geodiversity for habitat mapping” within the project “ECOMAP – Baltic Sea environmental assessments by opto-acoustic remote sensing, mapping, and monitoring” funded by the BONUS EEIG and the Innovation Fund Denmark.</p>


2021 ◽  
Author(s):  
Bruno Danis ◽  
Henrik Christiansen ◽  
Charlène Guillaumot ◽  
Franz Heindler ◽  
Quentin Jossart ◽  
...  

This dataset relates to the biodiversity census carried out during the Belgica 121 (B121) expedition to the Western Antarctic Peninsula from February to March 2019. One of the aims of the campaign was to explore the surroundings of the Gerlache Strait and to carry out a detailed biodiversity census focusing on inter- and subtidal shallow-water areas using both classic descriptive marine ecology methods as well as state-of-the art techniques (habitat mapping, genetics, trophic ecology). The biodiversity census was carried out onboard a nimble research vessel, RV Australis. This dataset will offer access to the raw data on biodiversity occurrences, obtained using a range of methods described in this data paper. New raw biodiversity data for a poorly sampled region (Western Antarctic Peninsula) with a special focus on shallow ecosystems.


2012 ◽  
Vol 39-40 ◽  
pp. 14-26 ◽  
Author(s):  
Aaron Micallef ◽  
Timothy P. Le Bas ◽  
Veerle A.I. Huvenne ◽  
Philippe Blondel ◽  
Veit Hühnerbach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document