multibeam data
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 9 (9) ◽  
pp. 947
Author(s):  
Wei Xu ◽  
Heqin Cheng ◽  
Shuwei Zheng ◽  
Hao Hu

Predictive mapping of seabed sediments based on multibeam bathymetric (BM), and backscatter (BS) data is effective for mapping the spatial distribution of the substrate. A robust modeling technique, the random forest decision tree (RFDT), was used to predict the seabed sediments in an area of the Joseph Bonaparte Gulf, Northern Australia, using the multibeam data and seabed sediment samples collected simultaneously. The results showed that: (1) Using multibeam bathymetry data in addition to multibeam backscatter data improves the prediction performance of the RFDT. In comparison to only multibeam backscatter data, the prediction performance achieved a ~10% improvement in sediment properties; it achieved a ~44.45% improvement of overall accuracy in sediment types, and a ~0.55 improvement in Kappa. (2) The underlying relationships between sediment properties and multibeam data show that there is an opposite non-linear correlation between sediment property-BS and sediment property-BM. For example, there is an obvious negative relationship between %mud-BS at incidence angles of 13° and 21°, but the relationship between %mud-BM is positive. As such, the RFDT is a useful and well-performing method in predicting the relationship between sediment properties and multibeam data and in predicting the distribution of sediment properties and types. However, the sediment prediction method in deep-water areas with high gravel content needs to be further evaluated.


Author(s):  
Jennifer I Fincham ◽  
Christian Wilson ◽  
Jon Barry ◽  
Stefan Bolam ◽  
Geoffrey French

Abstract Management of the marine environment is increasingly being conducted in accordance with an ecosystem-based approach, which requires an integrated approach to monitoring. Simultaneous acquisition of the different data types needed is often difficult, largely due to specific gear requirements (grabs, trawls, and video and acoustic approaches) and mismatches in their spatial and temporal scales. We present an example to resolve this using a convolutional neural network (CNN), using ad hoc multibeam data collected during multi-disciplinary surveys to predict the distribution of seabed habitats across the western English Channel. We adopted a habitat classification system, based on seabed morphology and sediment dynamics, and trained a CNN to label images generated from the multibeam data. The probability of the correct classification by the CNN varied per habitat, with accuracy above 60% for 85% of habitats in a training dataset. Statistical testing revealed that the spatial distribution of 57 of the 100 demersal fish and shellfish species sampled across the region during the surveys possessed a non-random relationship with the multibeam-derived habitats using CNN. CNNs, therefore, offer the potential to aid habitat mapping and facilitate species distribution modelling at the large spatial scales required under an ecosystem-based management framework.


2018 ◽  
Vol 37 (3) ◽  
pp. 200-212 ◽  
Author(s):  
Xingyu Wang ◽  
Yongjun Li ◽  
Shanghong Zhao ◽  
Yongxing Zheng ◽  
Zhuodan Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document