scholarly journals Fatigue Reliability Assessment for Orthotropic Steel Decks Based on Long-Term Strain Monitoring

Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 181 ◽  
Author(s):  
Yang Deng ◽  
Aiqun Li ◽  
Dongming Feng
2021 ◽  
Vol 8 ◽  
Author(s):  
Jun-Hong Xu ◽  
Guang-Dong Zhou ◽  
Tai-Yong Zhu

Fatigue damage accumulations would dramatically reduce the reliability and service life of the orthotropic steel decks. Incorrect fatigue assessment results may be obtained when load sequence effects are omitted. In the present study, fatigue reliability assessments of rib-to-deck weld joints in orthotropic steel bridge decks are conducted with the consideration of load sequence effects. The method, which judiciously considers the fatigue loading history and is derived from the sequential law and the whole-range S-N curve, is first proposed for fatigue reliability calculation. And then, the whole-range S-N curve describing the fatigue propagating process of the rib-to-deck weld joint is introduced. Finally, the developed method is applied to evaluate the fatigue reliability of two rib-to-deck weld joints in an orthotropic steel deck based on long-term measured strain histories. The influence of traffic growth and initial damage on the fatigue reliability is discussed. The results indicate that it is advisable to consider load sequence effects when assessing the fatigue reliability of orthotropic steel decks equipped with long-term strain monitoring systems and the initial damage significantly reduces the fatigue reliability of orthotropic steel decks.


2021 ◽  
Vol 153 (A4) ◽  
Author(s):  
Y Garbatov ◽  
C Guedes Soares

This work deals with the fatigue reliability assessment of a welded joint in a longitudinal stiffener of trapezoidal shape in a very fast ferry. Based on the analysis of wave and cargo induced loads the ship hull structure is evaluated. The local structure is represented by a longitudinal stiffener with a trapezoidal transverse section. The critical hot-spots and the stress distributions are defined by FEM. The fatigue damage assessment of considered hot spots is analysed accounting for the combination of wave induced and car-breaking transient loadings. The formulation for the assessment of the welded steel joint is based on the S-N approach and FORM/SORM techniques are applied to evaluate the reliability against fatigue failure accounting for corrosion deterioration. The structural system composed by several hot spots is evaluated as a series system based on second order reliability bounds.


2001 ◽  
Vol 23 (10) ◽  
pp. 1203-1211 ◽  
Author(s):  
Sang-Hyo Kim ◽  
Sang-Woo Lee ◽  
Ho-Seong Mha

2006 ◽  
Vol 309-311 ◽  
pp. 1191-1194
Author(s):  
Shuichi Wakayama ◽  
Teppei Kawakami ◽  
Junji Ikeda

Microfracture process during bending tests of alumina ceramics used for artificial joints was evaluated by acoustic emission (AE) technique. Four-point bending tests were carried out in air, refined water, physiological saline and simulated body fluid. AE behavior during bending test inhibited the rapid increasing point of AE events and energy prior to the final unstable fracture. It was understood that the bending stress at the increasing point corresponds to the critical stress for maincrack formation. The critical stress was affected by water in environments more strongly than fracture strength. Consequently, it was suggested that the characterization of maincrack formation is essential for the long-term reliability assessment of load-bearing bioceramics.


Sign in / Sign up

Export Citation Format

Share Document