scholarly journals Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification

Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 373 ◽  
Author(s):  
◽  
◽  
2015 ◽  
Vol 36 (24) ◽  
pp. 5983-6007 ◽  
Author(s):  
Erzhu Li ◽  
Peijun Du ◽  
Alim Samat ◽  
Junshi Xia ◽  
Meiqin Che

Author(s):  
D. Amarsaikhan

Abstract. The aim of this research is to classify urban land cover types using an advanced classification method. As the input bands to the classification, the features derived from Landsat 8 and Sentinel 1A SAR data sets are used. To extract the reliable urban land cover information from the optical and SAR features, a rule-based classification algorithm that uses spatial thresholds defined from the contextual knowledge is constructed. The result of the constructed method is compared with the results of a standard classification technique and it indicates a higher accuracy. Overall, the study demonstrates that the multisource data sets can considerably improve the classification of urban land cover types and the rule-based method is a powerful tool to produce a reliable land cover map.


2018 ◽  
Vol 7 (12) ◽  
pp. 453 ◽  
Author(s):  
Mst Ilme Faridatul ◽  
Bo Wu

Urban land cover classification and mapping is an important and ongoing research field in monitoring and managing urban sprawl and terrestrial ecosystems. The changes in land cover largely affect the terrestrial ecosystem, thus information on land cover is important for understanding the ecological environment. Quantification of land cover in urban areas is challenging due to their diversified activities and large spatial and temporal variations. To improve urban land cover classification and mapping, this study presents three new spectral indices and an automated approach to classifying four major urban land types: impervious, bare land, vegetation, and water. A modified normalized difference bare-land index (MNDBI) is proposed to enhance the separation of impervious and bare land. A tasseled cap water and vegetation index (TCWVI) is proposed to enhance the detection of vegetation and water areas. A shadow index (ShDI) is proposed to further improve water detection by separating water from shadows. An approach for optimizing the thresholds of the new indices is also developed. Finally, the optimized thresholds are used to classify land covers using a decision tree algorithm. Using Landsat-8 Operational Land Imager (OLI) data from two study sites (Hong Kong and Dhaka City, Bangladesh) with different urban characteristics, the proposed approach is systematically evaluated. Spectral separability analysis of the new indices is performed and compared with other common indices. The urban land cover classifications achieved by the proposed approach are compared with those of the classic support vector machine (SVM) algorithm. The proposed approach achieves an overall classification accuracy of 94-96%, which is superior to the accuracy of the SVM algorithm.


2021 ◽  
Vol 62 (1) ◽  
pp. 1-9
Author(s):  
Hung Le Trinh ◽  
Ha Thu Thi Le ◽  
Loc Duc Le ◽  
Long Thanh Nguyen ◽  

Classification of built-up land and bare land on remote sensing images is a very difficult problem due to the complexity of the urban land cover. Several urban indices have been proposed to improve the accuracy in classifying urban land use/land cover from optical satellite imagery. This paper presents an development of the EBBI (Enhanced Built-up and Bareness Index) index based on the combination of Landsat 8 and Sentinel 2 multi-resolution satellite imagery. Near infrared band (band 8a), short wave infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) Landsat 8 image were used to calculate EBBI index. The results obtained show that the combination of Landsat 8 and Sentinel 2 satellite images improves the spatial resolution of EBBI index image, thereby improving the accuracy of classification of bare land and built-up land by about 5% compared with the case using only Landsat 8 images.


Author(s):  
J. Jacinth Jennifer

<div><p class="IJARCSAbstract"><em>Satellite imagery paves way to obtain tangible information through remote sensing techniques.  It is necessary to classify the image in order to extract the features.  There exist various classification techniques and algorithms to retrieve various features from imagery.  As the technology development proceeds in a faster track it is necessary to compensate its advancements by developing new techniques for feature retrieval.  As far as high resolution satellite imagery are concerned object based feature retrieval and texture based feature retrieval techniques are gaining its importance.  The texture based feature retrieval has various techniques involved in it, among which Haralick’s texture parameters has much importance.  Thereby object based technique also has its own way of algorithms and processes for feature retrieval.  The eCognition software provides a platform for combining texture and object based technique.  It is well known from various journals that object based technique is best for classifying high resolution imagery.  Thus the image is primarily segmented into objects for classification.  The Haralick’s texture parameters which serve well in classification of urban land cover is chosen by computing statistical analysis.  Finally the chosen texture parameter is adopted in the classification of the objects.  The classified imagery is checked for accuracy and a high accuracy of 94.5% is obtained.</em></p></div>


2020 ◽  
Vol 12 (7) ◽  
pp. 1089
Author(s):  
Lesiba Thomas Tsoeleng ◽  
John Odindi ◽  
Paidamwoyo Mhangara

Understanding the often-heterogeneous land cover in urban areas is critical for, among other things, environmental monitoring, spatial planning, and enforcement. Recently, several earth observation satellites were developed with an enhanced spatial resolution that provides for precise and detailed representations of image objects. Morphological image analysis techniques provide useful tools for extracting spatial features from high-resolution, remotely sensed images. This study investigated the efficacy of mathematical morphological (MM) techniques in the land cover classification of a heterogeneous urban landscape using very high-resolution pan-sharpened Pleiades imagery. Specifically, the study evaluated two morphological profiles (MP) techniques (i.e., concatenation of morphological profiles (CMPs) and multi-morphological profiles (MMPs)) in the classification of a heterogeneous urban land cover. The overall accuracies for CMP were 83.14% and 83.19% over the two study areas. Similarly, the MMP overall accuracies were 84.42% and 84.08% for the two study sites. The study concluded that CMP and MMP can greatly improve the classification of heterogeneous landscapes that typify urban areas by effectively representing the structural landscape information necessary for discriminating related land cover classes. In general, similar and visually acceptable results were produced for land cover classification using either CMP or MMP image analysis techniques


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3717 ◽  
Author(s):  
Pengbin Zhang ◽  
Yinghai Ke ◽  
Zhenxin Zhang ◽  
Mingli Wang ◽  
Peng Li ◽  
...  

Urban land cover and land use mapping plays an important role in urban planning and management. In this paper, novel multi-scale deep learning models, namely ASPP-Unet and ResASPP-Unet are proposed for urban land cover classification based on very high resolution (VHR) satellite imagery. The proposed ASPP-Unet model consists of a contracting path which extracts the high-level features, and an expansive path, which up-samples the features to create a high-resolution output. The atrous spatial pyramid pooling (ASPP) technique is utilized in the bottom layer in order to incorporate multi-scale deep features into a discriminative feature. The ResASPP-Unet model further improves the architecture by replacing each layer with residual unit. The models were trained and tested based on WorldView-2 (WV2) and WorldView-3 (WV3) imageries over the city of Beijing. Model parameters including layer depth and the number of initial feature maps (IFMs) as well as the input image bands were evaluated in terms of their impact on the model performances. It is shown that the ResASPP-Unet model with 11 layers and 64 IFMs based on 8-band WV2 imagery produced the highest classification accuracy (87.1% for WV2 imagery and 84.0% for WV3 imagery). The ASPP-Unet model with the same parameter setting produced slightly lower accuracy, with overall accuracy of 85.2% for WV2 imagery and 83.2% for WV3 imagery. Overall, the proposed models outperformed the state-of-the-art models, e.g., U-Net, convolutional neural network (CNN) and Support Vector Machine (SVM) model over both WV2 and WV3 images, and yielded robust and efficient urban land cover classification results.


Sign in / Sign up

Export Citation Format

Share Document