scholarly journals Comparison of Different Sets of Features for Human Activity Recognition by Wearable Sensors

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4189 ◽  
Author(s):  
Samanta Rosati ◽  
Gabriella Balestra ◽  
Marco Knaflitz

Human Activity Recognition (HAR) refers to an emerging area of interest for medical, military, and security applications. However, the identification of the features to be used for activity classification and recognition is still an open point. The aim of this study was to compare two different feature sets for HAR. Particularly, we compared a set including time, frequency, and time-frequency domain features widely used in literature (FeatSet_A) with a set of time-domain features derived by considering the physical meaning of the acquired signals (FeatSet_B). The comparison of the two sets were based on the performances obtained using four machine learning classifiers. Sixty-one healthy subjects were asked to perform seven different daily activities wearing a MIMU-based device. Each signal was segmented using a 5-s window and for each window, 222 and 221 variables were extracted for the FeatSet_A and FeatSet_B respectively. Each set was reduced using a Genetic Algorithm (GA) simultaneously performing feature selection and classifier optimization. Our results showed that Support Vector Machine achieved the highest performances using both sets (97.1% and 96.7% for FeatSet_A and FeatSet_B respectively). However, FeatSet_B allows to better understand alterations of the biomechanical behavior in more complex situations, such as when applied to pathological subjects.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 692
Author(s):  
Jingcheng Chen ◽  
Yining Sun ◽  
Shaoming Sun

Human activity recognition (HAR) is essential in many health-related fields. A variety of technologies based on different sensors have been developed for HAR. Among them, fusion from heterogeneous wearable sensors has been developed as it is portable, non-interventional and accurate for HAR. To be applied in real-time use with limited resources, the activity recognition system must be compact and reliable. This requirement can be achieved by feature selection (FS). By eliminating irrelevant and redundant features, the system burden is reduced with good classification performance (CP). This manuscript proposes a two-stage genetic algorithm-based feature selection algorithm with a fixed activation number (GFSFAN), which is implemented on the datasets with a variety of time, frequency and time-frequency domain features extracted from the collected raw time series of nine activities of daily living (ADL). Six classifiers are used to evaluate the effects of selected feature subsets from different FS algorithms on HAR performance. The results indicate that GFSFAN can achieve good CP with a small size. A sensor-to-segment coordinate calibration algorithm and lower-limb joint angle estimation algorithm are introduced. Experiments on the effect of the calibration and the introduction of joint angle on HAR shows that both of them can improve the CP.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7853
Author(s):  
Aleksej Logacjov ◽  
Kerstin Bach ◽  
Atle Kongsvold ◽  
Hilde Bremseth Bårdstu ◽  
Paul Jarle Mork

Existing accelerometer-based human activity recognition (HAR) benchmark datasets that were recorded during free living suffer from non-fixed sensor placement, the usage of only one sensor, and unreliable annotations. We make two contributions in this work. First, we present the publicly available Human Activity Recognition Trondheim dataset (HARTH). Twenty-two participants were recorded for 90 to 120 min during their regular working hours using two three-axial accelerometers, attached to the thigh and lower back, and a chest-mounted camera. Experts annotated the data independently using the camera’s video signal and achieved high inter-rater agreement (Fleiss’ Kappa =0.96). They labeled twelve activities. The second contribution of this paper is the training of seven different baseline machine learning models for HAR on our dataset. We used a support vector machine, k-nearest neighbor, random forest, extreme gradient boost, convolutional neural network, bidirectional long short-term memory, and convolutional neural network with multi-resolution blocks. The support vector machine achieved the best results with an F1-score of 0.81 (standard deviation: ±0.18), recall of 0.85±0.13, and precision of 0.79±0.22 in a leave-one-subject-out cross-validation. Our highly professional recordings and annotations provide a promising benchmark dataset for researchers to develop innovative machine learning approaches for precise HAR in free living.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6927
Author(s):  
Xiaojuan Wang ◽  
Xinlei Wang ◽  
Tianqi Lv ◽  
Lei Jin ◽  
Mingshu He

Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset.


2021 ◽  
Author(s):  
Gábor Csizmadia ◽  
Krisztina Liszkai-Peres ◽  
Bence Ferdinandy ◽  
Ádám Miklósi ◽  
Veronika Konok

Abstract Human activity recognition (HAR) using machine learning (ML) methods is a relatively new method for collecting and analyzing large amounts of human behavioral data using special wearable sensors. Our main goal was to find a reliable method which could automatically detect various playful and daily routine activities in children. We defined 40 activities for ML recognition, and we collected activity motion data by means of wearable smartwatches with a special SensKid software. We analyzed the data of 34 children (19 girls, 15 boys; age range: 6.59 – 8.38; median age = 7.47). All children were typically developing first graders from three elementary schools. The activity recognition was a binary classification task which was evaluated with a Light Gradient Boosted Machine (LGBM)learning algorithm, a decision based method with a 3-fold cross validation. We used the sliding window technique during the signal processing, and we aimed at finding the best window size for the analysis of each behavior element to achieve the most effective settings. Seventeen activities out of 40 were successfully recognized with AUC values above 0.8. The window size had no significant effect. The overall accuracy was 0.95, which is at the top segment of the previously published similar HAR data. In summary, the LGBM is a very promising solution for HAR. In line with previous findings, our results provide a firm basis for a more precise and effective recognition system that can make human behavioral analysis faster and more objective.


Sign in / Sign up

Export Citation Format

Share Document